Spaces:
				
			
			
	
			
			
		Runtime error
		
	
	
	
			
			
	
	
	
	
		
		
		Runtime error
		
	| # Copyright (c) Meta Platforms, Inc. and affiliates. | |
| # All rights reserved. | |
| # | |
| # This source code is licensed under the license found in the | |
| # LICENSE file in the root directory of this source tree. | |
| import logging | |
| from typing import Any | |
| import torch | |
| import torch.optim | |
| import torch.distributed as dist | |
| logger = logging.getLogger(__name__) | |
| _params_t = Any | |
| def to_real(x): | |
| if torch.is_complex(x): | |
| return x.real | |
| else: | |
| return x | |
| class DAdaptAdam(torch.optim.Optimizer): | |
| """Adam with D-Adaptation automatic step-sizes. | |
| Leave LR set to 1 unless you encounter instability. | |
| Args: | |
| params (iterable): | |
| Iterable of parameters to optimize or dicts defining parameter groups. | |
| lr (float): | |
| Learning rate adjustment parameter. Increases or decreases the D-adapted learning rate. | |
| betas (tuple[float, float], optional): coefficients used for computing | |
| running averages of gradient and its square (default: (0.9, 0.999)) | |
| momentum (float): | |
| Momentum value in the range [0,1) (default: 0.9). | |
| eps (float): | |
| Term added to the denominator outside of the root operation to improve numerical stability. (default: 1e-8). | |
| weight_decay (float): | |
| Weight decay, i.e. a L2 penalty (default: 0). | |
| log_every (int): | |
| Log using print every k steps, default 0 (no logging). | |
| decouple (boolean): | |
| Use AdamW style decoupled weight decay | |
| d0 (float): | |
| Initial D estimate for D-adaptation (default 1e-6). Rarely needs changing. | |
| growth_rate (float): | |
| prevent the D estimate from growing faster than this multiplicative rate. | |
| Default is inf, for unrestricted. Values like 1.02 give a kind of learning | |
| rate warmup effect. | |
| fsdp_in_use (bool): | |
| If you're using sharded parameters, this should be set to True. The optimizer | |
| will attempt to auto-detect this, but if you're using an implementation other | |
| than PyTorch's builtin version, the auto-detection won't work. | |
| """ | |
| def __init__(self, params, lr=1.0, | |
| betas=(0.9, 0.999), | |
| eps=1e-8, | |
| weight_decay=0, | |
| log_every=0, | |
| decouple=True, | |
| d0=1e-6, | |
| growth_rate=float('inf')): | |
| if not 0.0 < d0: | |
| raise ValueError("Invalid d0 value: {}".format(d0)) | |
| if not 0.0 < lr: | |
| raise ValueError("Invalid learning rate: {}".format(lr)) | |
| if not 0.0 < eps: | |
| raise ValueError("Invalid epsilon value: {}".format(eps)) | |
| if not 0.0 <= betas[0] < 1.0: | |
| raise ValueError("Invalid beta parameter at index 0: {}".format(betas[0])) | |
| if not 0.0 <= betas[1] < 1.0: | |
| raise ValueError("Invalid beta parameter at index 1: {}".format(betas[1])) | |
| if decouple: | |
| logger.info("Using decoupled weight decay") | |
| from .fsdp import is_fsdp_used | |
| fsdp_in_use = is_fsdp_used() | |
| defaults = dict(lr=lr, betas=betas, eps=eps, | |
| weight_decay=weight_decay, | |
| d=d0, | |
| k=0, | |
| gsq_weighted=0.0, | |
| log_every=log_every, | |
| decouple=decouple, | |
| growth_rate=growth_rate, | |
| fsdp_in_use=fsdp_in_use) | |
| super().__init__(params, defaults) | |
| def supports_memory_efficient_fp16(self): | |
| return False | |
| def supports_flat_params(self): | |
| return True | |
| def step(self, closure=None): | |
| """Performs a single optimization step. | |
| Args: | |
| closure (callable, optional): A closure that reevaluates the model | |
| and returns the loss. | |
| """ | |
| loss = None | |
| if closure is not None: | |
| loss = closure() | |
| g_sq = 0.0 | |
| sksq_weighted = 0.0 | |
| sk_l1 = 0.0 | |
| lr = max(group['lr'] for group in self.param_groups) | |
| group = self.param_groups[0] | |
| gsq_weighted = group['gsq_weighted'] | |
| d = group['d'] | |
| dlr = d*lr | |
| growth_rate = group['growth_rate'] | |
| decouple = group['decouple'] | |
| fsdp_in_use = group['fsdp_in_use'] | |
| log_every = group['log_every'] | |
| beta1, beta2 = group['betas'] | |
| for group in self.param_groups: | |
| group_lr = group['lr'] | |
| decay = group['weight_decay'] | |
| k = group['k'] | |
| eps = group['eps'] | |
| if group_lr not in [lr, 0.0]: | |
| raise RuntimeError("Setting different lr values in different parameter " | |
| "groups is only supported for values of 0") | |
| for p in group['params']: | |
| if p.grad is None: | |
| continue | |
| if hasattr(p, "_fsdp_flattened"): | |
| fsdp_in_use = True | |
| grad = p.grad.data | |
| # Apply weight decay (coupled variant) | |
| if decay != 0 and not decouple: | |
| grad.add_(p.data, alpha=decay) | |
| state = self.state[p] | |
| # State initialization | |
| if 'step' not in state: | |
| state['step'] = 0 | |
| state['s'] = torch.zeros_like(p.data, memory_format=torch.preserve_format).detach() | |
| # Exponential moving average of gradient values | |
| state['exp_avg'] = torch.zeros_like(p.data, memory_format=torch.preserve_format).detach() | |
| # Exponential moving average of squared gradient values | |
| state['exp_avg_sq'] = torch.zeros_like( | |
| to_real(p.data), memory_format=torch.preserve_format).detach() | |
| exp_avg, exp_avg_sq = state['exp_avg'], state['exp_avg_sq'] | |
| grad_grad = to_real(grad * grad.conj()) | |
| # Adam EMA updates | |
| if group_lr > 0: | |
| exp_avg.mul_(beta1).add_(grad, alpha=dlr*(1-beta1)) | |
| exp_avg_sq.mul_(beta2).add_(grad_grad, alpha=1-beta2) | |
| denom = exp_avg_sq.sqrt().add_(eps) | |
| g_sq += grad_grad.div_(denom).sum().item() | |
| s = state['s'] | |
| s.mul_(beta2).add_(grad, alpha=dlr*(1-beta2)) | |
| sksq_weighted += to_real(s * s.conj()).div_(denom).sum().item() | |
| sk_l1 += s.abs().sum().item() | |
| ###### | |
| gsq_weighted = beta2*gsq_weighted + g_sq*(dlr**2)*(1-beta2) | |
| d_hat = d | |
| # if we have not done any progres, return | |
| # if we have any gradients available, will have sk_l1 > 0 (unless \|g\|=0) | |
| if sk_l1 == 0: | |
| return loss | |
| if lr > 0.0: | |
| if fsdp_in_use: | |
| dist_tensor = torch.zeros(3, device='cuda') | |
| dist_tensor[0] = sksq_weighted | |
| dist_tensor[1] = gsq_weighted | |
| dist_tensor[2] = sk_l1 | |
| dist.all_reduce(dist_tensor, op=dist.ReduceOp.SUM) | |
| global_sksq_weighted = dist_tensor[0] | |
| global_gsq_weighted = dist_tensor[1] | |
| global_sk_l1 = dist_tensor[2] | |
| else: | |
| global_sksq_weighted = sksq_weighted | |
| global_gsq_weighted = gsq_weighted | |
| global_sk_l1 = sk_l1 | |
| d_hat = (global_sksq_weighted/(1-beta2) - global_gsq_weighted)/global_sk_l1 | |
| d = max(d, min(d_hat, d*growth_rate)) | |
| if log_every > 0 and k % log_every == 0: | |
| logger.info( | |
| f"(k={k}) dlr: {dlr:1.1e} d_hat: {d_hat:1.1e}, d: {d:1.8}. " | |
| f"sksq_weighted={global_sksq_weighted:1.1e} gsq_weighted={global_gsq_weighted:1.1e} " | |
| f"sk_l1={global_sk_l1:1.1e}{' (FSDP)' if fsdp_in_use else ''}") | |
| for group in self.param_groups: | |
| group['gsq_weighted'] = gsq_weighted | |
| group['d'] = d | |
| group_lr = group['lr'] | |
| decay = group['weight_decay'] | |
| k = group['k'] | |
| eps = group['eps'] | |
| for p in group['params']: | |
| if p.grad is None: | |
| continue | |
| grad = p.grad.data | |
| state = self.state[p] | |
| exp_avg, exp_avg_sq = state['exp_avg'], state['exp_avg_sq'] | |
| state['step'] += 1 | |
| denom = exp_avg_sq.sqrt().add_(eps) | |
| denom = denom.type(p.type()) | |
| # Apply weight decay (decoupled variant) | |
| if decay != 0 and decouple and group_lr > 0: | |
| p.data.add_(p.data, alpha=-decay * dlr) | |
| # Take step | |
| p.data.addcdiv_(exp_avg, denom, value=-1) | |
| group['k'] = k + 1 | |
| return loss | |
 
			
