File size: 17,558 Bytes
629d3bb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
"""Nanochat model implementation and inference utilities."""

from __future__ import annotations

import json
import math
import pickle
from dataclasses import dataclass
from pathlib import Path
from typing import TYPE_CHECKING

import torch
import torch.nn.functional as F
from torch import nn

if TYPE_CHECKING:
    from collections.abc import Generator


@dataclass
class GPTConfig:
    """Configuration for GPT model architecture.

    Attributes:
        sequence_len: Maximum sequence length
        vocab_size: Size of vocabulary
        n_layer: Number of transformer layers
        n_head: Number of attention heads
        n_kv_head: Number of key-value heads
        n_embd: Embedding dimension

    """

    sequence_len: int = 1024
    vocab_size: int = 50304
    n_layer: int = 12
    n_head: int = 6
    n_kv_head: int = 6
    n_embd: int = 768


def norm(x: torch.Tensor) -> torch.Tensor:
    """Apply RMS normalization to input tensor."""
    return F.rms_norm(x, (x.size(-1),))


_EXPECTED_NDIM = 4


def apply_rotary_emb(
    x: torch.Tensor,
    cos: torch.Tensor,
    sin: torch.Tensor,
) -> torch.Tensor:
    """Apply rotary positional embeddings to input tensor.

    Args:
        x: Input tensor of shape (batch, seq_len, n_heads, head_dim)
        cos: Cosine component of rotary embeddings
        sin: Sine component of rotary embeddings

    Returns:
        Tensor with rotary embeddings applied

    """
    assert x.ndim == _EXPECTED_NDIM
    d = x.shape[3] // 2
    x1, x2 = x[..., :d], x[..., d:]
    y1 = x1 * cos + x2 * sin
    y2 = x1 * (-sin) + x2 * cos
    return torch.cat([y1, y2], 3).to(x.dtype)


def repeat_kv(x: torch.Tensor, n_rep: int) -> torch.Tensor:
    """Repeat key/value tensors for multi-head attention.

    Args:
        x: Input tensor of shape (batch, n_kv_heads, seq_len, head_dim)
        n_rep: Number of times to repeat

    Returns:
        Tensor with repeated key/value heads

    """
    if n_rep == 1:
        return x
    bs, n_kv_heads, slen, head_dim = x.shape
    return (
        x[:, :, None, :, :]
        .expand(bs, n_kv_heads, n_rep, slen, head_dim)
        .reshape(bs, n_kv_heads * n_rep, slen, head_dim)
    )


class CausalSelfAttention(nn.Module):
    """Causal self-attention with rotary position embeddings."""

    def __init__(self, config: GPTConfig, layer_idx: int) -> None:
        """Initialize attention layer.

        Args:
            config: Model configuration
            layer_idx: Layer index for KV cache

        """
        super().__init__()
        self.layer_idx = layer_idx
        self.n_head = config.n_head
        self.n_kv_head = config.n_kv_head
        self.n_embd = config.n_embd
        self.head_dim = self.n_embd // self.n_head
        assert self.n_embd % self.n_head == 0
        assert self.n_kv_head <= self.n_head
        assert self.n_head % self.n_kv_head == 0
        self.c_q = nn.Linear(self.n_embd, self.n_head * self.head_dim, bias=False)
        self.c_k = nn.Linear(self.n_embd, self.n_kv_head * self.head_dim, bias=False)
        self.c_v = nn.Linear(self.n_embd, self.n_kv_head * self.head_dim, bias=False)
        self.c_proj = nn.Linear(self.n_embd, self.n_embd, bias=False)

    def forward(
        self,
        x: torch.Tensor,
        cos_sin: tuple[torch.Tensor, torch.Tensor],
        kv_cache: object | None,
    ) -> torch.Tensor:
        """Forward pass of attention layer.

        Args:
            x: Input tensor
            cos_sin: Tuple of (cos, sin) rotary embeddings
            kv_cache: Optional KV cache for generation

        Returns:
            Output tensor after attention

        """
        b, t, _c = x.size()
        q = self.c_q(x).view(b, t, self.n_head, self.head_dim)
        k = self.c_k(x).view(b, t, self.n_kv_head, self.head_dim)
        v = self.c_v(x).view(b, t, self.n_kv_head, self.head_dim)
        cos, sin = cos_sin
        q, k = apply_rotary_emb(q, cos, sin), apply_rotary_emb(k, cos, sin)
        q, k = norm(q), norm(k)
        q, k, v = q.transpose(1, 2), k.transpose(1, 2), v.transpose(1, 2)
        if kv_cache is not None:
            k, v = kv_cache.insert_kv(self.layer_idx, k, v)
        tq = q.size(2)
        tk = k.size(2)
        nrep = self.n_head // self.n_kv_head
        k, v = repeat_kv(k, nrep), repeat_kv(v, nrep)
        if kv_cache is None or tq == tk:
            y = F.scaled_dot_product_attention(q, k, v, is_causal=True)
        elif tq == 1:
            y = F.scaled_dot_product_attention(q, k, v, is_causal=False)
        else:
            attn_mask = torch.zeros((tq, tk), dtype=torch.bool, device=q.device)
            prefix_len = tk - tq
            if prefix_len > 0:
                attn_mask[:, :prefix_len] = True
            attn_mask[:, prefix_len:] = torch.tril(
                torch.ones((tq, tq), dtype=torch.bool, device=q.device),
            )
            y = F.scaled_dot_product_attention(q, k, v, attn_mask=attn_mask)
        y = y.transpose(1, 2).contiguous().view(b, t, -1)
        return self.c_proj(y)


class MLP(nn.Module):
    """Multi-layer perceptron with squared ReLU activation."""

    def __init__(self, config: GPTConfig) -> None:
        """Initialize MLP layer.

        Args:
            config: Model configuration

        """
        super().__init__()
        self.c_fc = nn.Linear(config.n_embd, 4 * config.n_embd, bias=False)
        self.c_proj = nn.Linear(4 * config.n_embd, config.n_embd, bias=False)

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        """Forward pass of MLP.

        Args:
            x: Input tensor

        Returns:
            Output tensor after MLP transformation

        """
        x = self.c_fc(x)
        x = F.relu(x).square()
        return self.c_proj(x)


class Block(nn.Module):
    """Transformer block with attention and MLP."""

    def __init__(self, config: GPTConfig, layer_idx: int) -> None:
        """Initialize transformer block.

        Args:
            config: Model configuration
            layer_idx: Layer index

        """
        super().__init__()
        self.attn = CausalSelfAttention(config, layer_idx)
        self.mlp = MLP(config)

    def forward(
        self,
        x: torch.Tensor,
        cos_sin: tuple[torch.Tensor, torch.Tensor],
        kv_cache: object | None,
    ) -> torch.Tensor:
        """Forward pass of transformer block.

        Args:
            x: Input tensor
            cos_sin: Tuple of (cos, sin) rotary embeddings
            kv_cache: Optional KV cache for generation

        Returns:
            Output tensor after block transformation

        """
        x = x + self.attn(norm(x), cos_sin, kv_cache)
        return x + self.mlp(norm(x))


class GPT(nn.Module):
    """GPT model with rotary position embeddings."""

    def __init__(self, config: GPTConfig) -> None:
        """Initialize GPT model.

        Args:
            config: Model configuration

        """
        super().__init__()
        self.config = config
        self.transformer = nn.ModuleDict(
            {
                "wte": nn.Embedding(config.vocab_size, config.n_embd),
                "h": nn.ModuleList(
                    [Block(config, layer_idx) for layer_idx in range(config.n_layer)],
                ),
            },
        )
        self.lm_head = nn.Linear(config.n_embd, config.vocab_size, bias=False)
        self.rotary_seq_len = config.sequence_len * 10
        head_dim = config.n_embd // config.n_head
        cos, sin = self._precompute_rotary_embeddings(self.rotary_seq_len, head_dim)
        self.register_buffer("cos", cos, persistent=False)
        self.register_buffer("sin", sin, persistent=False)
        self.transformer.wte.to(dtype=torch.bfloat16)

    def init_weights(self) -> None:
        """Initialize model weights."""
        self.apply(self._init_weights)
        torch.nn.init.zeros_(self.lm_head.weight)
        for block in self.transformer.h:
            torch.nn.init.zeros_(block.mlp.c_proj.weight)
            torch.nn.init.zeros_(block.attn.c_proj.weight)
        head_dim = self.config.n_embd // self.config.n_head
        cos, sin = self._precompute_rotary_embeddings(self.rotary_seq_len, head_dim)
        self.cos, self.sin = cos, sin

    def _init_weights(self, module: nn.Module) -> None:
        """Initialize weights for a single module.

        Args:
            module: Module to initialize

        """
        if isinstance(module, nn.Linear):
            fan_out = module.weight.size(0)
            fan_in = module.weight.size(1)
            std = 1.0 / math.sqrt(fan_in) * min(1.0, math.sqrt(fan_out / fan_in))
            torch.nn.init.normal_(module.weight, mean=0.0, std=std)
            if module.bias is not None:
                torch.nn.init.zeros_(module.bias)
        elif isinstance(module, nn.Embedding):
            torch.nn.init.normal_(module.weight, mean=0.0, std=1.0)

    def _precompute_rotary_embeddings(
        self,
        seq_len: int,
        head_dim: int,
        base: int = 10000,
        device: torch.device | str | None = None,
    ) -> tuple[torch.Tensor, torch.Tensor]:
        """Precompute rotary position embeddings.

        Args:
            seq_len: Maximum sequence length
            head_dim: Dimension of attention heads
            base: Base for frequency calculation
            device: Device to place tensors on

        Returns:
            Tuple of (cos, sin) tensors for rotary embeddings

        """
        if device is None:
            device = self.transformer.wte.weight.device
        channel_range = torch.arange(0, head_dim, 2, dtype=torch.float32, device=device)
        inv_freq = 1.0 / (base ** (channel_range / head_dim))
        t = torch.arange(seq_len, dtype=torch.float32, device=device)
        freqs = torch.outer(t, inv_freq)
        cos, sin = freqs.cos(), freqs.sin()
        cos, sin = cos.bfloat16(), sin.bfloat16()
        return cos[None, :, None, :], sin[None, :, None, :]

    def forward(
        self,
        idx: torch.Tensor,
        targets: torch.Tensor | None = None,
        kv_cache: object | None = None,
    ) -> torch.Tensor:
        """Forward pass of GPT model.

        Args:
            idx: Input token indices
            targets: Target token indices (unused in this implementation)
            kv_cache: Optional KV cache for generation

        Returns:
            Logits for next token prediction

        """
        _b, t = idx.size()
        assert self.cos.size(1) >= t
        t0 = 0 if kv_cache is None else kv_cache.get_pos()
        cos_sin = self.cos[:, t0 : t0 + t], self.sin[:, t0 : t0 + t]
        x = self.transformer.wte(idx)
        x = norm(x)
        for block in self.transformer.h:
            x = block(x, cos_sin, kv_cache)
        x = norm(x)
        softcap = 15
        logits = self.lm_head(x)
        return softcap * torch.tanh(logits / softcap)


class NanochatModel:
    """Wrapper class for loading and running inference with the nanochat model."""

    def __init__(self, model_dir: str, device: str = "cpu") -> None:
        """Initialize the NanochatModel.

        Args:
            model_dir: Directory containing model files
            device: Device to run inference on (default: "cpu")

        """
        self.device = torch.device(device)
        self.model_dir = model_dir

        self.model = self._load_model()
        self.enc = self._load_tokenizer()
        self._setup_special_tokens()

    def _load_model(self) -> GPT:
        """Load the model from the model directory."""
        model_dir_path = Path(self.model_dir)
        model_files = list(model_dir_path.glob("model_*.pt"))
        if not model_files:
            msg = f"No model files found in {self.model_dir}"
            raise FileNotFoundError(msg)
        model_file = model_files[0]

        meta_files = list(model_dir_path.glob("meta_*.json"))
        if not meta_files:
            msg = f"No meta files found in {self.model_dir}"
            raise FileNotFoundError(msg)
        meta_file = meta_files[0]

        with meta_file.open() as f:
            meta = json.load(f)

        model_config_kwargs = meta["model_config"]

        model_config = GPTConfig(**model_config_kwargs)
        with torch.device("meta"):
            model = GPT(model_config)

        model_data = torch.load(
            model_file,
            map_location=self.device,
            weights_only=True,
        )
        model_data = {k.removeprefix("_orig_mod."): v for k, v in model_data.items()}

        model_data = {
            k: v.float() if v.dtype == torch.bfloat16 else v
            for k, v in model_data.items()
        }

        model.to_empty(device=self.device)
        model.init_weights()
        model.load_state_dict(model_data, strict=True, assign=True)
        model.eval()

        return model

    def _load_tokenizer(self) -> object:
        """Load the tokenizer from the model directory.

        Returns:
            Loaded tokenizer object

        """
        tokenizer_path = Path(self.model_dir) / "tokenizer.pkl"
        if not tokenizer_path.exists():
            msg = f"Tokenizer not found at {tokenizer_path}"
            raise FileNotFoundError(msg)

        with tokenizer_path.open("rb") as f:
            return pickle.load(f)

    def _setup_special_tokens(self) -> None:
        """Set up special token IDs for chat formatting."""
        try:
            try:
                self.bos_token_id = self.enc.encode_single_token("<|bos|>")
            except KeyError:
                self.bos_token_id = self.enc.encode_single_token("<|endoftext|>")

            self.user_start_id = self.enc.encode_single_token("<|user_start|>")
            self.user_end_id = self.enc.encode_single_token("<|user_end|>")
            self.assistant_start_id = self.enc.encode_single_token(
                "<|assistant_start|>",
            )
            self.assistant_end_id = self.enc.encode_single_token("<|assistant_end|>")
            self.stop_tokens = {self.bos_token_id, self.assistant_end_id}
        except KeyError as e:
            msg = f"Required special token missing from tokenizer: {e}"
            raise ValueError(msg) from e

    def format_prompt(self, message: str) -> list[int]:
        """Format a user message using chat format.

        Args:
            message: User's input message

        Returns:
            List of token IDs formatted for chat

        """
        prompt_tokens = self.enc.encode_ordinary(message)
        return [
            self.bos_token_id,
            self.user_start_id,
            *prompt_tokens,
            self.user_end_id,
            self.assistant_start_id,
        ]

    def format_conversation(self, history: list[dict[str, str]]) -> list[int]:
        """Format a multi-turn conversation using chat format.

        Args:
            history: List of message dictionaries with 'role' and 'content' keys
                    role can be 'user' or 'assistant'

        Returns:
            List of token IDs formatted for multi-turn chat

        """
        tokens = [self.bos_token_id]

        for message in history:
            role = message.get("role")
            content = message.get("content", "")
            content_tokens = self.enc.encode_ordinary(content)

            if role == "user":
                tokens.extend([
                    self.user_start_id,
                    *content_tokens,
                    self.user_end_id,
                ])
            elif role == "assistant":
                tokens.extend([
                    self.assistant_start_id,
                    *content_tokens,
                    self.assistant_end_id,
                ])

        tokens.append(self.assistant_start_id)

        return tokens

    def generate(
        self,
        prompt: str | None = None,
        history: list[dict[str, str]] | None = None,
        max_tokens: int = 512,
        temperature: float = 0.8,
        top_k: int = 50,
    ) -> Generator[str, None, None]:
        """Generate text from a prompt or conversation history.

        Args:
            prompt: The input text prompt (for single-turn)
            history: List of message dicts with 'role' and 'content' (for multi-turn)
            max_tokens: Maximum number of tokens to generate
            temperature: Sampling temperature
            top_k: Top-k sampling parameter

        Yields:
            Decoded token strings

        """
        if history is not None:
            input_ids = self.format_conversation(history)
        elif prompt is not None:
            input_ids = self.format_prompt(prompt)
        else:
            msg = "Either prompt or history must be provided"
            raise ValueError(msg)

        x = torch.tensor([input_ids], dtype=torch.long, device=self.device)

        with torch.inference_mode():
            for _ in range(max_tokens):
                logits = self.model(x)

                logits = logits[:, -1, :]

                logits = logits / temperature

                if top_k > 0:
                    v, _ = torch.topk(logits, min(top_k, logits.size(-1)))
                    logits[logits < v[:, [-1]]] = -float("inf")

                probs = F.softmax(logits, dim=-1)
                next_token = torch.multinomial(probs, num_samples=1)

                if next_token.item() in self.stop_tokens:
                    break

                token_str = self.enc.decode([next_token.item()])
                yield token_str

                x = torch.cat([x, next_token], dim=1)