File size: 8,047 Bytes
0c538b6
 
 
 
 
 
 
 
5dc89bc
 
0c538b6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
import gradio as gr
import cv2
import numpy as np
import torch
import os
import tempfile
import subprocess

import torch
model = torch.hub.load('ultralytics/yolov5', 'custom', path='watermark-detection-73.pt', force_reload=True)

model.conf = 0.25
model.iou = 0.45
model.max_det = 1


# ------------------------------
# Helper Functions
# ------------------------------
def extract_first_frame(video_path):
    cap = cv2.VideoCapture(video_path)
    ret, frame = cap.read()
    cap.release()
    if ret:
        return frame
    return None

def detect_watermark_coordinates(frame):
    results = model(frame)
    detections = results.xyxy[0].cpu().numpy()
    if len(detections) == 0:
        return None
    x1, y1, x2, y2, _, _ = detections[0]
    return int(x1), int(y1), int(x2 - x1), int(y2 - y1)

def generate_mask_from_coords(frame_shape, x, y, w, h):
    mask = np.zeros(frame_shape[:2], dtype=np.uint8)
    mask[int(y):int(y+h), int(x):int(x+w)] = 255
    return mask

def apply_inpaint_to_video(video_path, x, y, w, h):
    temp_dir = tempfile.mkdtemp()
    cap = cv2.VideoCapture(video_path)
    fps = cap.get(cv2.CAP_PROP_FPS)
    width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
    height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
    frame_count = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
    output_video_path = os.path.join(temp_dir, "output.mp4")
    fourcc = cv2.VideoWriter_fourcc(*'mp4v')
    writer = cv2.VideoWriter(output_video_path, fourcc, fps, (width, height))
    for _ in range(frame_count):
        ret, frame = cap.read()
        if not ret:
            break
        mask = generate_mask_from_coords(frame.shape, x, y, w, h)
        inpainted = cv2.inpaint(frame, mask, 3, cv2.INPAINT_TELEA)
        writer.write(inpainted)
    cap.release()
    writer.release()

    # Combine processed video with original audio
    temp_with_audio = os.path.splitext(video_path)[0] + "_no_watermark.mp4"
    cmd_audio = f'ffmpeg -y -i "{output_video_path}" -i "{video_path}" -c:v copy -c:a aac -map 0:v:0 -map 1:a:0 -shortest "{temp_with_audio}"'
    subprocess.call(cmd_audio, shell=True)

    # Re-encode to ensure browser compatibility
    final_output_path = os.path.splitext(video_path)[0] + "_no_watermark_fixed.mp4"
    cmd_fix = f'ffmpeg -y -i "{temp_with_audio}" -vf "scale=trunc(iw/2)*2:trunc(ih/2)*2" -c:v libx264 -preset fast -crf 23 -c:a aac -b:a 128k -movflags +faststart "{final_output_path}"'
    subprocess.call(cmd_fix, shell=True)
    return final_output_path

def apply_inpaint_to_image(image, x, y, w, h):
    mask = generate_mask_from_coords(image.shape, x, y, w, h)
    inpainted = cv2.inpaint(image, mask, 3, cv2.INPAINT_TELEA)
    return inpainted

def overlay_box_on_image(image, x, y, w, h):
    image_with_box = image.copy()
    cv2.rectangle(image_with_box, (x, y), (x + w, y + h), (0, 255, 0), 2)
    return image_with_box

def get_coords_for_image(image):
    coords = detect_watermark_coordinates(image)
    h, w, _ = image.shape
    if coords:
        x, y, w_box, h_box = coords
        return overlay_box_on_image(image, x, y, w_box, h_box), x, y, w_box, h_box, "βœ… Auto watermark detected."
    else:
        w_box, h_box = int(w * 0.25), int(h * 0.1)
        x, y = (w - w_box) // 2, (h - h_box) // 2
        return overlay_box_on_image(image, x, y, w_box, h_box), x, y, w_box, h_box, "⚠️ No watermark detected. Default box placed."

def update_image_live(image, x, y, w, h):
    return overlay_box_on_image(image, int(x), int(y), int(w), int(h))

def process_uploaded_video(video, x, y, w, h):
    try:
        output_path = apply_inpaint_to_video(video, int(x), int(y), int(w), int(h))
        return output_path, "βœ… Watermark removed from video."
    except Exception as e:
        return None, f"❌ Error: {str(e)}"

def process_uploaded_image(image, x, y, w, h):
    try:
        result = apply_inpaint_to_image(image, int(x), int(y), int(w), int(h))
        return result, "βœ… Watermark removed from image."
    except Exception as e:
        return None, f"❌ Error: {str(e)}"

# ------------------------------
# Gradio UI (Merged with Theme)
# ------------------------------
with gr.Blocks(theme=gr.themes.Soft(), title="Watermark Remover") as demo:
    gr.Markdown("<p style='text-align: center;'>Remove watermarks from both videos and images using AI detection or manual box selection.</p>")

    with gr.Tab("πŸ“Ή Video Watermark Remover"):
        with gr.Row():
            with gr.Column(scale=1):
                video_input = gr.Video(label="🎞️ Upload Video")
                auto_btn_v = gr.Button("πŸ” Auto Detect Watermark", variant="primary")
                run_btn_v = gr.Button("🧹 Remove Watermark", variant="secondary")
                status_v = gr.Textbox(label="Status", interactive=False)
                output_file_v = gr.File(label="⬇️ Download Cleaned Video")
            with gr.Column(scale=1):
                video_frame = gr.Image(label="πŸ“ Watermark Preview", interactive=False)
                frame_original = gr.State()
                with gr.Accordion("πŸ”§ Manual Box Adjustment", open=False):
                    x_v = gr.Slider(minimum=0, maximum=2000, label="X Coordinate", step=1)
                    y_v = gr.Slider(minimum=0, maximum=2000, label="Y Coordinate", step=1)
                    w_v = gr.Slider(minimum=10, maximum=2000, label="Width", step=1)
                    h_v = gr.Slider(minimum=10, maximum=2000, label="Height", step=1)

        auto_btn_v.click(
            fn=lambda video: get_coords_for_image(extract_first_frame(video)),
            inputs=video_input,
            outputs=[video_frame, x_v, y_v, w_v, h_v, status_v],
        ).then(
            fn=lambda video: extract_first_frame(video),
            inputs=video_input,
            outputs=frame_original,
        )

        for slider in [x_v, y_v, w_v, h_v]:
            slider.change(
                fn=update_image_live,
                inputs=[frame_original, x_v, y_v, w_v, h_v],
                outputs=video_frame
            )

        run_btn_v.click(
            fn=process_uploaded_video,
            inputs=[video_input, x_v, y_v, w_v, h_v],
            outputs=[output_file_v, status_v]
        )

    with gr.Tab("πŸ–ΌοΈ Image Watermark Remover"):
        with gr.Row():
            with gr.Column(scale=1):
                image_input = gr.Image(label="πŸ–ΌοΈ Upload Image")
                auto_btn_i = gr.Button("πŸ” Auto Detect Watermark", variant="primary")
                run_btn_i = gr.Button("🧹 Remove Watermark", variant="secondary")
                status_i = gr.Textbox(label="Status", interactive=False)
                output_image = gr.Image(label="🧼 Cleaned Image")
            with gr.Column(scale=1):
                image_display = gr.Image(label="πŸ“ Watermark Preview", interactive=False)
                image_original = gr.State()
                with gr.Accordion("πŸ”§ Manual Box Adjustment", open=False):
                    x_i = gr.Slider(minimum=0, maximum=2000, label="X Coordinate", step=1)
                    y_i = gr.Slider(minimum=0, maximum=2000, label="Y Coordinate", step=1)
                    w_i = gr.Slider(minimum=10, maximum=2000, label="Width", step=1)
                    h_i = gr.Slider(minimum=10, maximum=2000, label="Height", step=1)

        auto_btn_i.click(
            fn=get_coords_for_image,
            inputs=image_input,
            outputs=[image_display, x_i, y_i, w_i, h_i, status_i],
        ).then(
            fn=lambda img: img,
            inputs=image_input,
            outputs=image_original,
        )

        for slider in [x_i, y_i, w_i, h_i]:
            slider.change(
                fn=update_image_live,
                inputs=[image_original, x_i, y_i, w_i, h_i],
                outputs=image_display
            )

        run_btn_i.click(
            fn=process_uploaded_image,
            inputs=[image_input, x_i, y_i, w_i, h_i],
            outputs=[output_image, status_i]
        )

if __name__ == '__main__':
    demo.launch()