File size: 3,667 Bytes
d6c8af7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
```python
#!/usr/bin/env python3
"""
Sample Implementation for E-Commerce Client
Demonstrates real-world usage patterns
"""

import asyncio
from ai_marketing_model import EcommerceAIMarketingGenerator, create_sample_data
import pandas as pd
from datetime import datetime

class PremiumClientImplementation:
    """Premium implementation for high-value e-commerce clients"""
    
    def __init__(self):
        self.ai_generator = EcommerceAIMarketingGenerator()
        
    async def full_implementation(self, client_data_path: str):
        """
        Complete implementation workflow
        """
        print(f"🎯 Starting Premium Implementation for {client_data_path}")
        
        # Load and prepare client data
        client_data = pd.read_csv(client_data_path)
        
        # Initialize AI models
        self.ai_generator.load_generative_model()
        
        # Train predictive model
        features, targets = self.ai_generator.create_predictive_features(client_data)
        accuracy = self.ai_generator.train_predictive_model(features, targets)
        
        # Segment customers
        segments = self.ai_generator.predict_customer_preferences(client_data)
        
        # Generate content for top segments
        high_value_segments = [seg for seg in segments.values() if seg.get('confidence', 0) > 0.7)
        
        print(f"πŸ“ˆ Identified {len(high_value_segments)} high-value customer segments")
        
        # Create content for each segment
        generated_contents = []
        for customer_id, segment in list(segments.items())[:5]:  # Demo with 5 customers
            content = self.ai_generator.generate_marketing_content(
                'email_campaign', customer_id, {
                    'product_category': segment['preferred_category'],
                    'brand_tone': 'engaging and trustworthy',
                    'key_features': 'premium quality, fast delivery, excellent support',
                    'cta_type': 'exclusive_offer',
                    'urgency_level': 'medium',
                    'promo_offer': '15% discount with priority shipping',
                    'recent_purchases': 'similar products in category',
                    'audience_description': 'loyal customers with high lifetime value',
                }
            )
            
            # Evaluate quality
            metrics = self.ai_generator.evaluate_content_quality(content)
            
            # Generate report
            report = self.ai_generator.create_premium_report(content, metrics, segment)
            generated_contents.append(report)
        
        return generated_contents

# Real-world usage example
async def main():
    """Demonstrate premium implementation"""
    
    # Create sample client data
    print("πŸ“Š Setting up client environment...")
    sample_data = create_sample_data()
    
    # Initialize premium service
    premium_service = PremiumClientImplementation()
    
    # Run full implementation
    reports = await premium_service.full_implementation('sample_customer_data.csv')
    
    print("\n" + "="*80)
    print("πŸŽ‰ PREMIUM IMPLEMENTATION COMPLETE!")
    print(f"πŸ“„ Generated {len(reports)} premium marketing reports")
    
    # Show sample output
    if reports:
        print("\nπŸ“§ Sample Generated Content:")
        print(reports[0])
    
    print("\nπŸ’° Client Value Delivered:")
    print("- Hyper-personalized marketing content")
    print("- Predictive customer segmentation")
    print("- Automated content generation pipeline")
    print("- ROI tracking and performance analytics")

if __name__ == "__main__":
    asyncio.run(main())
```