```python #!/usr/bin/env python3 """ Sample Implementation for E-Commerce Client Demonstrates real-world usage patterns """ import asyncio from ai_marketing_model import EcommerceAIMarketingGenerator, create_sample_data import pandas as pd from datetime import datetime class PremiumClientImplementation: """Premium implementation for high-value e-commerce clients""" def __init__(self): self.ai_generator = EcommerceAIMarketingGenerator() async def full_implementation(self, client_data_path: str): """ Complete implementation workflow """ print(f"šŸŽÆ Starting Premium Implementation for {client_data_path}") # Load and prepare client data client_data = pd.read_csv(client_data_path) # Initialize AI models self.ai_generator.load_generative_model() # Train predictive model features, targets = self.ai_generator.create_predictive_features(client_data) accuracy = self.ai_generator.train_predictive_model(features, targets) # Segment customers segments = self.ai_generator.predict_customer_preferences(client_data) # Generate content for top segments high_value_segments = [seg for seg in segments.values() if seg.get('confidence', 0) > 0.7) print(f"šŸ“ˆ Identified {len(high_value_segments)} high-value customer segments") # Create content for each segment generated_contents = [] for customer_id, segment in list(segments.items())[:5]: # Demo with 5 customers content = self.ai_generator.generate_marketing_content( 'email_campaign', customer_id, { 'product_category': segment['preferred_category'], 'brand_tone': 'engaging and trustworthy', 'key_features': 'premium quality, fast delivery, excellent support', 'cta_type': 'exclusive_offer', 'urgency_level': 'medium', 'promo_offer': '15% discount with priority shipping', 'recent_purchases': 'similar products in category', 'audience_description': 'loyal customers with high lifetime value', } ) # Evaluate quality metrics = self.ai_generator.evaluate_content_quality(content) # Generate report report = self.ai_generator.create_premium_report(content, metrics, segment) generated_contents.append(report) return generated_contents # Real-world usage example async def main(): """Demonstrate premium implementation""" # Create sample client data print("šŸ“Š Setting up client environment...") sample_data = create_sample_data() # Initialize premium service premium_service = PremiumClientImplementation() # Run full implementation reports = await premium_service.full_implementation('sample_customer_data.csv') print("\n" + "="*80) print("šŸŽ‰ PREMIUM IMPLEMENTATION COMPLETE!") print(f"šŸ“„ Generated {len(reports)} premium marketing reports") # Show sample output if reports: print("\nšŸ“§ Sample Generated Content:") print(reports[0]) print("\nšŸ’° Client Value Delivered:") print("- Hyper-personalized marketing content") print("- Predictive customer segmentation") print("- Automated content generation pipeline") print("- ROI tracking and performance analytics") if __name__ == "__main__": asyncio.run(main()) ```