File size: 7,904 Bytes
d87fc8a
 
91854f5
27f5ac2
d87fc8a
 
 
 
 
91854f5
d87fc8a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
02d37d2
 
 
d87fc8a
02d37d2
d87fc8a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
02d37d2
d87fc8a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
02d37d2
d87fc8a
 
27f5ac2
d87fc8a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
02d37d2
 
d87fc8a
 
 
02d37d2
d87fc8a
 
 
 
 
27f5ac2
 
d87fc8a
 
 
 
27f5ac2
 
d87fc8a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
27f5ac2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d87fc8a
 
 
 
27f5ac2
d87fc8a
 
 
 
 
 
27f5ac2
d87fc8a
02d37d2
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
import matplotlib.pyplot as plt
import pandas as pd
from utils import generate_underlined_line, COLORS
from data import extract_model_data, find_failure_first_seen

# Figure dimensions
FIGURE_WIDTH_DUAL = 18
FIGURE_HEIGHT_DUAL = 9

# Colors imported from utils

# Styling constants
BLACK = '#000000'
LABEL_COLOR = '#AAAAAA'
TITLE_COLOR = '#FFFFFF'

# Font sizes
DEVICE_TITLE_FONT_SIZE = 28

# Layout constants
SEPARATOR_LINE_Y_END = 0.85
SUBPLOT_TOP = 0.85
SUBPLOT_WSPACE = 0.4
PIE_START_ANGLE = 90
BORDER_LINE_WIDTH = 0.5
SEPARATOR_ALPHA = 0.5
SEPARATOR_LINE_WIDTH = 1
DEVICE_TITLE_PAD = 2
MODEL_TITLE_Y = 1

# Processing constants
MAX_FAILURE_ITEMS = 10


def _create_pie_chart(ax: plt.Axes, device_label: str, filtered_stats: dict) -> None:
    """Create a pie chart for device statistics."""
    if not filtered_stats:
        ax.text(0.5, 0.5, 'No test results',
                horizontalalignment='center', verticalalignment='center',
                transform=ax.transAxes, fontsize=14, color='#888888',
                fontfamily='monospace', weight='normal')
        ax.set_title(device_label, fontsize=DEVICE_TITLE_FONT_SIZE, weight='bold',
                     pad=DEVICE_TITLE_PAD, color=TITLE_COLOR, fontfamily='monospace')
        ax.axis('off')
        return

    chart_colors = [COLORS[category] for category in filtered_stats.keys()]

    # Create minimal pie chart - full pie, no donut effect
    wedges, texts, autotexts = ax.pie(
        filtered_stats.values(),
        labels=[label.lower() for label in filtered_stats.keys()],  # Lowercase for minimal look
        colors=chart_colors,
        autopct=lambda pct: f'{round(pct * sum(filtered_stats.values()) / 100)}',
        startangle=PIE_START_ANGLE,
        explode=None,  # No separation
        shadow=False,
        wedgeprops=dict(edgecolor='#1a1a1a', linewidth=BORDER_LINE_WIDTH),  # Minimal borders
        textprops={'fontsize': 12, 'weight': 'normal',
                   'color': LABEL_COLOR, 'fontfamily': 'monospace'}
    )

    # Enhanced percentage text styling for better readability
    for autotext in autotexts:
        autotext.set_color(BLACK)  # Black text for better contrast
        autotext.set_weight('bold')
        autotext.set_fontsize(14)
        autotext.set_fontfamily('monospace')

    # Minimal category labels
    for text in texts:
        text.set_color(LABEL_COLOR)
        text.set_weight('normal')
        text.set_fontsize(13)
        text.set_fontfamily('monospace')

    # Device label closer to chart and bigger
    ax.set_title(device_label, fontsize=DEVICE_TITLE_FONT_SIZE, weight='normal',
                 pad=DEVICE_TITLE_PAD, color=TITLE_COLOR, fontfamily='monospace')


def plot_model_stats(df: pd.DataFrame, model_name: str, historical_df: pd.DataFrame = None) -> tuple[plt.Figure, str, str]:
    """Draws pie charts of model's passed, failed, skipped, and error stats for AMD and NVIDIA."""
    # Handle case where the dataframe is empty or the model name could not be found in it
    if df.empty or model_name not in df.index:
        # Create empty stats for both devices
        amd_filtered = {}
        nvidia_filtered = {}
        failures_amd = failures_nvidia = {}
    else:
        row = df.loc[model_name]

        # Extract and process model data
        amd_stats, nvidia_stats = extract_model_data(row)[:2]

        # Filter out categories with 0 values for cleaner visualization
        amd_filtered = {k: v for k, v in amd_stats.items() if v > 0}
        nvidia_filtered = {k: v for k, v in nvidia_stats.items() if v > 0}

        # Generate failure info directly from dataframe
        failures_amd = row.get('failures_amd', None)
        failures_amd = {} if (failures_amd is None or pd.isna(failures_amd)) else dict(failures_amd)
        failures_nvidia = row.get('failures_nvidia')
        failures_nvidia = {} if (failures_nvidia is None or pd.isna(failures_nvidia)) else dict(failures_nvidia)

    # failure_xxx = {"single": [test, ...], "multi": [...]}
    # test = {"line": test_name. "trace": error_msg}

    # Always create figure with two subplots side by side with padding
    fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(FIGURE_WIDTH_DUAL, FIGURE_HEIGHT_DUAL), facecolor=BLACK)
    ax1.set_facecolor(BLACK)
    ax2.set_facecolor(BLACK)

    # Create both pie charts with device labels
    _create_pie_chart(ax1, "amd", amd_filtered)
    _create_pie_chart(ax2, "nvidia", nvidia_filtered)

    # Add subtle separation line between charts - stops at device labels level
    line_x = 0.5
    fig.add_artist(plt.Line2D([line_x, line_x], [0.0, SEPARATOR_LINE_Y_END],
                             color='#333333', linewidth=SEPARATOR_LINE_WIDTH,
                             alpha=SEPARATOR_ALPHA, transform=fig.transFigure))

    # Add central shared title for model name
    fig.suptitle(f'{model_name.lower()}', fontsize=32, weight='bold',
                 color='#CCCCCC', fontfamily='monospace', y=MODEL_TITLE_Y)

    # Clean layout with padding and space for central title
    plt.tight_layout()
    plt.subplots_adjust(top=SUBPLOT_TOP, wspace=SUBPLOT_WSPACE)

    amd_failed_info = prepare_textbox_content(failures_amd, 'AMD', bool(amd_filtered), model_name, historical_df)
    nvidia_failed_info = prepare_textbox_content(failures_nvidia, 'NVIDIA', bool(nvidia_filtered), model_name, historical_df)

    return fig, amd_failed_info, nvidia_failed_info


def prepare_textbox_content(failures: dict[str, list], device: str, data_available: bool, model_name: str = None, historical_df: pd.DataFrame = None) -> str:
    """Extract failure information from failures object with first seen dates."""
    # Catch the case where there is no data
    if not data_available:
        return generate_underlined_line(f"No data for {device}")
    # Catch the case where there are no failures
    if not failures:
        return generate_underlined_line(f"No failures for {device}")

    # Summary of failures
    single_failures = failures.get("single", [])
    multi_failures = failures.get("multi", [])
    info_lines = [
        generate_underlined_line(f"Failure summary for {device}:"),
        f"Single GPU failures: {len(single_failures)}",
        f"Multi GPU failures: {len(multi_failures)}",
        ""
    ]

    # Helper function to format failure line with first seen date
    def format_failure_line(test: dict, gpu_type: str) -> str:
        full_name = test.get("line", "::*could not find name*")
        short_name = full_name.split("::")[-1]
        
        # Try to find first seen date if historical data is available
        if historical_df is not None and model_name is not None and not historical_df.empty:
            first_seen = find_failure_first_seen(
                historical_df, 
                model_name, 
                full_name, 
                device.lower(), 
                gpu_type
            )
            if first_seen:
                # Format date as MM-DD-YYYY
                try:
                    from datetime import datetime
                    date_obj = datetime.strptime(first_seen, "%Y-%m-%d")
                    formatted_date = date_obj.strftime("%m-%d-%Y")
                    return f"{short_name} (First seen: {formatted_date})"
                except:
                    return f"{short_name} (First seen: {first_seen})"
        
        return short_name

    # Add single-gpu failures
    if single_failures:
        info_lines.append(generate_underlined_line("Single GPU failures:"))
        for test in single_failures:
            info_lines.append(format_failure_line(test, "single"))
        info_lines.append("\n")

    # Add multi-gpu failures
    if multi_failures:
        info_lines.append(generate_underlined_line("Multi GPU failures:"))
        for test in multi_failures:
            info_lines.append(format_failure_line(test, "multi"))

    return "\n".join(info_lines)