Upload folder using huggingface_hub
Browse files- app.py +296 -261
- data.py +17 -18
- requirements.txt +1 -0
- styles.css +32 -41
- time_series_gradio.py +120 -0
app.py
CHANGED
|
@@ -2,12 +2,18 @@ import matplotlib.pyplot as plt
|
|
| 2 |
import matplotlib
|
| 3 |
import pandas as pd
|
| 4 |
import gradio as gr
|
|
|
|
| 5 |
|
| 6 |
from data import CIResults
|
| 7 |
from utils import logger
|
| 8 |
from summary_page import create_summary_page
|
| 9 |
from model_page import plot_model_stats
|
| 10 |
-
from time_series_gradio import
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 11 |
|
| 12 |
|
| 13 |
# Configure matplotlib to prevent memory warnings and set dark background
|
|
@@ -20,6 +26,12 @@ plt.ioff() # Turn off interactive mode to prevent figure accumulation
|
|
| 20 |
# Load data once at startup
|
| 21 |
Ci_results = CIResults()
|
| 22 |
Ci_results.load_data()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 23 |
# Start the auto-reload scheduler
|
| 24 |
Ci_results.schedule_data_reload()
|
| 25 |
|
|
@@ -78,9 +90,19 @@ def load_css():
|
|
| 78 |
logger.warning("styles.css not found, using minimal default styles")
|
| 79 |
return "body { background: #000; color: #fff; }"
|
| 80 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 81 |
|
| 82 |
# Create the Gradio interface with sidebar and dark theme
|
| 83 |
-
with gr.Blocks(title="Model Test Results Dashboard", css=load_css()) as demo:
|
| 84 |
|
| 85 |
|
| 86 |
with gr.Row():
|
|
@@ -92,50 +114,6 @@ with gr.Blocks(title="Model Test Results Dashboard", css=load_css()) as demo:
|
|
| 92 |
description_text = get_description_text()
|
| 93 |
description_display = gr.Markdown(description_text, elem_classes=["sidebar-description"])
|
| 94 |
|
| 95 |
-
# View toggle buttons
|
| 96 |
-
with gr.Row(elem_classes=["view-toggle-row"]):
|
| 97 |
-
current_view_button = gr.Button(
|
| 98 |
-
"current\n📊",
|
| 99 |
-
variant="primary",
|
| 100 |
-
size="lg",
|
| 101 |
-
elem_classes=["view-toggle-button", "view-toggle-active"]
|
| 102 |
-
)
|
| 103 |
-
historical_view_button = gr.Button(
|
| 104 |
-
"history\n📈",
|
| 105 |
-
variant="secondary",
|
| 106 |
-
size="lg",
|
| 107 |
-
elem_classes=["view-toggle-button"]
|
| 108 |
-
)
|
| 109 |
-
|
| 110 |
-
# Date selection toggle button (initially hidden)
|
| 111 |
-
date_toggle_button = gr.Button(
|
| 112 |
-
"► Date Selection",
|
| 113 |
-
variant="secondary",
|
| 114 |
-
elem_classes=["date-header"],
|
| 115 |
-
visible=False
|
| 116 |
-
)
|
| 117 |
-
|
| 118 |
-
# Date selection container (collapsible) - start folded
|
| 119 |
-
with gr.Column(visible=True, elem_classes=["date-selection", "date-selection-hidden"]) as date_selection:
|
| 120 |
-
start_date = gr.Dropdown(
|
| 121 |
-
choices=Ci_results.available_dates,
|
| 122 |
-
value=Ci_results.available_dates[-1] if Ci_results.available_dates else None, # Last date (oldest)
|
| 123 |
-
label="Start Date",
|
| 124 |
-
elem_classes=["date-dropdown"]
|
| 125 |
-
)
|
| 126 |
-
end_date = gr.Dropdown(
|
| 127 |
-
choices=Ci_results.available_dates,
|
| 128 |
-
value=Ci_results.available_dates[0] if Ci_results.available_dates else None, # First date (newest)
|
| 129 |
-
label="End Date",
|
| 130 |
-
elem_classes=["date-dropdown"]
|
| 131 |
-
)
|
| 132 |
-
load_historical_button = gr.Button(
|
| 133 |
-
"Reload Historical Data",
|
| 134 |
-
variant="primary",
|
| 135 |
-
size="sm",
|
| 136 |
-
elem_classes=["load-historical-button"]
|
| 137 |
-
)
|
| 138 |
-
|
| 139 |
# Summary button (for current view)
|
| 140 |
summary_button = gr.Button(
|
| 141 |
"summary\n📊",
|
|
@@ -144,6 +122,14 @@ with gr.Blocks(title="Model Test Results Dashboard", css=load_css()) as demo:
|
|
| 144 |
elem_classes=["summary-button"]
|
| 145 |
)
|
| 146 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 147 |
# Model selection header (clickable toggle)
|
| 148 |
model_toggle_button = gr.Button(
|
| 149 |
f"► Select model ({len(Ci_results.available_models)})",
|
|
@@ -192,14 +178,6 @@ with gr.Blocks(title="Model Test Results Dashboard", css=load_css()) as demo:
|
|
| 192 |
|
| 193 |
# Detailed view components (hidden by default)
|
| 194 |
with gr.Column(visible=False, elem_classes=["detail-view"]) as detail_view:
|
| 195 |
-
# Back button for current view detail
|
| 196 |
-
back_to_summary_current_button = gr.Button(
|
| 197 |
-
"← Back to Summary",
|
| 198 |
-
variant="secondary",
|
| 199 |
-
size="sm",
|
| 200 |
-
elem_classes=["back-button"]
|
| 201 |
-
)
|
| 202 |
-
|
| 203 |
# Create the plot output
|
| 204 |
plot_output = gr.Plot(
|
| 205 |
label="",
|
|
@@ -235,51 +213,77 @@ with gr.Blocks(title="Model Test Results Dashboard", css=load_css()) as demo:
|
|
| 235 |
# Time-series summary displays (multiple Gradio plots)
|
| 236 |
time_series_failure_rates = gr.LinePlot(
|
| 237 |
label="",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 238 |
elem_classes=["plot-container"]
|
| 239 |
)
|
| 240 |
|
| 241 |
time_series_amd_tests = gr.LinePlot(
|
| 242 |
label="",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 243 |
elem_classes=["plot-container"]
|
| 244 |
)
|
| 245 |
|
| 246 |
time_series_nvidia_tests = gr.LinePlot(
|
| 247 |
label="",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 248 |
elem_classes=["plot-container"]
|
| 249 |
)
|
| 250 |
|
| 251 |
# Time-series model view (hidden by default)
|
| 252 |
with gr.Column(visible=False, elem_classes=["time-series-detail-view"]) as time_series_detail_view:
|
| 253 |
-
# Back button for time-series model view
|
| 254 |
-
back_to_summary_button = gr.Button(
|
| 255 |
-
"← Back to Summary",
|
| 256 |
-
variant="secondary",
|
| 257 |
-
size="sm",
|
| 258 |
-
elem_classes=["back-button"]
|
| 259 |
-
)
|
| 260 |
-
|
| 261 |
# Time-series plots for specific model (with spacing)
|
| 262 |
time_series_amd_model_plot = gr.LinePlot(
|
| 263 |
label="",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 264 |
elem_classes=["plot-container"]
|
| 265 |
)
|
| 266 |
|
| 267 |
time_series_nvidia_model_plot = gr.LinePlot(
|
| 268 |
label="",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 269 |
elem_classes=["plot-container"]
|
| 270 |
)
|
| 271 |
|
| 272 |
-
# Set up click handlers for model buttons
|
| 273 |
-
for i, btn in enumerate(model_buttons):
|
| 274 |
-
model_name = model_choices[i]
|
| 275 |
-
btn.click(
|
| 276 |
-
fn=lambda selected_model=model_name: plot_model_stats(Ci_results.df, selected_model),
|
| 277 |
-
outputs=[plot_output, amd_failed_tests_output, nvidia_failed_tests_output]
|
| 278 |
-
).then(
|
| 279 |
-
fn=lambda: [gr.update(visible=False), gr.update(visible=True)],
|
| 280 |
-
outputs=[summary_display, detail_view]
|
| 281 |
-
)
|
| 282 |
-
|
| 283 |
# Model toggle functionality
|
| 284 |
def toggle_model_list(current_visible):
|
| 285 |
"""Toggle the visibility of the model list."""
|
|
@@ -298,6 +302,10 @@ with gr.Blocks(title="Model Test Results Dashboard", css=load_css()) as demo:
|
|
| 298 |
|
| 299 |
# Track model list visibility state
|
| 300 |
model_list_visible = gr.State(False)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 301 |
|
| 302 |
model_toggle_button.click(
|
| 303 |
fn=toggle_model_list,
|
|
@@ -305,42 +313,58 @@ with gr.Blocks(title="Model Test Results Dashboard", css=load_css()) as demo:
|
|
| 305 |
outputs=[model_toggle_button, model_list_container, model_list_visible]
|
| 306 |
)
|
| 307 |
|
| 308 |
-
# Date toggle functionality
|
| 309 |
-
def toggle_date_selection(current_visible):
|
| 310 |
-
"""Toggle the visibility of the date selection."""
|
| 311 |
-
new_visible = not current_visible
|
| 312 |
-
arrow = "▼" if new_visible else "►"
|
| 313 |
-
button_text = f"{arrow} Date Selection"
|
| 314 |
-
|
| 315 |
-
# Use CSS classes instead of Gradio visibility
|
| 316 |
-
css_classes = ["date-selection"]
|
| 317 |
-
if new_visible:
|
| 318 |
-
css_classes.append("date-selection-visible")
|
| 319 |
-
else:
|
| 320 |
-
css_classes.append("date-selection-hidden")
|
| 321 |
-
|
| 322 |
-
return gr.update(value=button_text), gr.update(elem_classes=css_classes), new_visible
|
| 323 |
-
|
| 324 |
-
# Track date selection visibility state
|
| 325 |
-
date_selection_visible = gr.State(False)
|
| 326 |
-
|
| 327 |
-
date_toggle_button.click(
|
| 328 |
-
fn=toggle_date_selection,
|
| 329 |
-
inputs=[date_selection_visible],
|
| 330 |
-
outputs=[date_toggle_button, date_selection, date_selection_visible]
|
| 331 |
-
)
|
| 332 |
|
| 333 |
-
#
|
| 334 |
-
def
|
| 335 |
-
|
| 336 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 337 |
|
| 338 |
summary_button.click(
|
| 339 |
-
fn=
|
| 340 |
-
|
| 341 |
-
|
| 342 |
-
|
| 343 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 344 |
)
|
| 345 |
|
| 346 |
# Function to get CI job links
|
|
@@ -413,174 +437,185 @@ with gr.Blocks(title="Model Test Results Dashboard", css=load_css()) as demo:
|
|
| 413 |
return "🔗 **CI Jobs:** *Error loading links*\n\n❓ **[FAQ](README.md)**"
|
| 414 |
|
| 415 |
|
| 416 |
-
|
| 417 |
-
|
| 418 |
-
|
| 419 |
-
|
| 420 |
-
|
| 421 |
-
|
| 422 |
-
gr.update(visible=
|
| 423 |
-
gr.update(visible=True),
|
| 424 |
-
gr.update(
|
| 425 |
-
|
| 426 |
-
|
| 427 |
-
|
| 428 |
-
|
| 429 |
-
|
| 430 |
-
|
| 431 |
-
|
| 432 |
-
|
| 433 |
-
|
| 434 |
-
|
| 435 |
-
|
| 436 |
-
|
| 437 |
-
|
| 438 |
-
|
| 439 |
-
|
| 440 |
-
|
| 441 |
-
|
| 442 |
-
|
| 443 |
-
|
| 444 |
-
|
| 445 |
-
|
| 446 |
-
|
| 447 |
-
|
| 448 |
-
|
| 449 |
-
|
| 450 |
-
|
| 451 |
-
|
| 452 |
-
|
| 453 |
-
|
| 454 |
-
|
| 455 |
-
|
| 456 |
-
|
| 457 |
-
|
| 458 |
-
|
| 459 |
-
|
| 460 |
-
|
| 461 |
-
|
| 462 |
-
|
| 463 |
-
|
| 464 |
-
|
| 465 |
-
|
| 466 |
-
|
| 467 |
-
plots = create_time_series_summary_gradio(Ci_results.historical_df)
|
| 468 |
-
return plots['failure_rates'], plots['amd_tests'], plots['nvidia_tests']
|
| 469 |
-
else:
|
| 470 |
-
return gr.update(), gr.update(), gr.update()
|
| 471 |
-
except Exception as e:
|
| 472 |
-
logger.error(f"Error auto-loading historical data: {e}")
|
| 473 |
-
return gr.update(), gr.update(), gr.update()
|
| 474 |
else:
|
| 475 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 476 |
|
| 477 |
-
|
| 478 |
-
fn=
|
| 479 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 480 |
)
|
| 481 |
|
| 482 |
-
historical_view_button.click(
|
| 483 |
-
fn=toggle_to_historical_view,
|
| 484 |
-
outputs=[current_view, historical_view, date_toggle_button, summary_button, current_view_button, historical_view_button, time_series_failure_rates, time_series_amd_tests, time_series_nvidia_tests]
|
| 485 |
-
).then(
|
| 486 |
-
fn=auto_load_historical_data,
|
| 487 |
-
outputs=[time_series_failure_rates, time_series_amd_tests, time_series_nvidia_tests]
|
| 488 |
-
)
|
| 489 |
-
|
| 490 |
-
# Historical data loading functionality
|
| 491 |
-
def load_historical_data(start_date, end_date):
|
| 492 |
-
"""Load and display historical data."""
|
| 493 |
-
if not start_date or not end_date:
|
| 494 |
-
logger.error("No start or end date provided")
|
| 495 |
-
return gr.update(), gr.update(), gr.update()
|
| 496 |
-
|
| 497 |
-
try:
|
| 498 |
-
Ci_results.load_historical_data(start_date, end_date)
|
| 499 |
-
|
| 500 |
-
if Ci_results.historical_df.empty:
|
| 501 |
-
logger.error("No historical data found for the selected date range")
|
| 502 |
-
return gr.update(), gr.update(), gr.update()
|
| 503 |
-
|
| 504 |
-
# Create time-series summary plots
|
| 505 |
-
plots = create_time_series_summary_gradio(Ci_results.historical_df)
|
| 506 |
-
|
| 507 |
-
# Cache the loaded data
|
| 508 |
-
Ci_results.cached_start_date = start_date
|
| 509 |
-
Ci_results.cached_end_date = end_date
|
| 510 |
-
|
| 511 |
-
return plots['failure_rates'], plots['amd_tests'], plots['nvidia_tests']
|
| 512 |
-
|
| 513 |
-
except Exception as e:
|
| 514 |
-
logger.error(f"Error loading historical data: {e}")
|
| 515 |
-
return gr.update(), gr.update(), gr.update()
|
| 516 |
-
|
| 517 |
-
load_historical_button.click(
|
| 518 |
-
fn=load_historical_data,
|
| 519 |
-
inputs=[start_date, end_date],
|
| 520 |
-
outputs=[time_series_failure_rates, time_series_amd_tests, time_series_nvidia_tests]
|
| 521 |
-
)
|
| 522 |
|
| 523 |
# Time-series model selection functionality
|
| 524 |
def show_time_series_model(selected_model):
|
| 525 |
"""Show time-series view for a specific model."""
|
| 526 |
-
|
| 527 |
-
|
| 528 |
-
|
| 529 |
-
|
| 530 |
-
|
| 531 |
-
return plots['amd_plot'], plots['nvidia_plot']
|
| 532 |
-
except Exception as e:
|
| 533 |
-
logger.error(f"Error creating time-series for model {selected_model}: {e}")
|
| 534 |
-
return gr.update(), gr.update()
|
| 535 |
-
|
| 536 |
-
# Back button functionality
|
| 537 |
-
def back_to_summary():
|
| 538 |
-
"""Return from model time-series view to summary time-series view."""
|
| 539 |
-
return [
|
| 540 |
-
gr.update(visible=True), # time_series_failure_rates
|
| 541 |
-
gr.update(visible=True), # time_series_amd_tests
|
| 542 |
-
gr.update(visible=True), # time_series_nvidia_tests
|
| 543 |
-
gr.update(visible=False) # time_series_detail_view
|
| 544 |
-
]
|
| 545 |
-
|
| 546 |
-
back_to_summary_button.click(
|
| 547 |
-
fn=back_to_summary,
|
| 548 |
-
outputs=[time_series_failure_rates, time_series_amd_tests, time_series_nvidia_tests, time_series_detail_view]
|
| 549 |
-
)
|
| 550 |
|
| 551 |
-
#
|
| 552 |
-
def
|
| 553 |
-
|
| 554 |
-
|
| 555 |
-
|
| 556 |
-
|
| 557 |
-
|
| 558 |
-
|
| 559 |
-
|
| 560 |
-
|
| 561 |
-
|
| 562 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 563 |
|
| 564 |
-
# Update model button handlers to work with both views
|
| 565 |
for i, btn in enumerate(model_buttons):
|
| 566 |
model_name = model_choices[i]
|
| 567 |
-
|
| 568 |
-
# Current view handler (existing functionality)
|
| 569 |
-
btn.click(
|
| 570 |
-
fn=lambda selected_model=model_name: plot_model_stats(Ci_results.df, selected_model),
|
| 571 |
-
outputs=[plot_output, amd_failed_tests_output, nvidia_failed_tests_output]
|
| 572 |
-
).then(
|
| 573 |
-
fn=lambda: [gr.update(visible=False), gr.update(visible=True)],
|
| 574 |
-
outputs=[summary_display, detail_view]
|
| 575 |
-
)
|
| 576 |
-
|
| 577 |
-
# Historical view handler (new functionality)
|
| 578 |
btn.click(
|
| 579 |
-
fn=lambda
|
| 580 |
-
|
| 581 |
-
|
| 582 |
-
|
| 583 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 584 |
)
|
| 585 |
|
| 586 |
# Auto-update CI links when the interface loads
|
|
|
|
| 2 |
import matplotlib
|
| 3 |
import pandas as pd
|
| 4 |
import gradio as gr
|
| 5 |
+
from gradio_toggle import Toggle
|
| 6 |
|
| 7 |
from data import CIResults
|
| 8 |
from utils import logger
|
| 9 |
from summary_page import create_summary_page
|
| 10 |
from model_page import plot_model_stats
|
| 11 |
+
from time_series_gradio import (
|
| 12 |
+
create_time_series_summary_gradio,
|
| 13 |
+
create_model_time_series_gradio,
|
| 14 |
+
get_time_series_summary_dfs,
|
| 15 |
+
get_model_time_series_dfs,
|
| 16 |
+
)
|
| 17 |
|
| 18 |
|
| 19 |
# Configure matplotlib to prevent memory warnings and set dark background
|
|
|
|
| 26 |
# Load data once at startup
|
| 27 |
Ci_results = CIResults()
|
| 28 |
Ci_results.load_data()
|
| 29 |
+
# Preload historical data at startup
|
| 30 |
+
if Ci_results.available_dates:
|
| 31 |
+
start_date_val = Ci_results.available_dates[-1] # Last date (oldest)
|
| 32 |
+
end_date_val = Ci_results.available_dates[0] # First date (newest)
|
| 33 |
+
Ci_results.load_historical_data(start_date_val, end_date_val)
|
| 34 |
+
logger.info(f"Preloaded historical data: {len(Ci_results.historical_df)} records")
|
| 35 |
# Start the auto-reload scheduler
|
| 36 |
Ci_results.schedule_data_reload()
|
| 37 |
|
|
|
|
| 90 |
logger.warning("styles.css not found, using minimal default styles")
|
| 91 |
return "body { background: #000; color: #fff; }"
|
| 92 |
|
| 93 |
+
js_func = """
|
| 94 |
+
function refresh() {
|
| 95 |
+
const url = new URL(window.location);
|
| 96 |
+
|
| 97 |
+
if (url.searchParams.get('__theme') !== 'dark') {
|
| 98 |
+
url.searchParams.set('__theme', 'dark');
|
| 99 |
+
window.location.href = url.href;
|
| 100 |
+
}
|
| 101 |
+
}
|
| 102 |
+
"""
|
| 103 |
|
| 104 |
# Create the Gradio interface with sidebar and dark theme
|
| 105 |
+
with gr.Blocks(title="Model Test Results Dashboard", css=load_css(), js=js_func) as demo:
|
| 106 |
|
| 107 |
|
| 108 |
with gr.Row():
|
|
|
|
| 114 |
description_text = get_description_text()
|
| 115 |
description_display = gr.Markdown(description_text, elem_classes=["sidebar-description"])
|
| 116 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 117 |
# Summary button (for current view)
|
| 118 |
summary_button = gr.Button(
|
| 119 |
"summary\n📊",
|
|
|
|
| 122 |
elem_classes=["summary-button"]
|
| 123 |
)
|
| 124 |
|
| 125 |
+
history_view_button = Toggle(
|
| 126 |
+
label="History view",
|
| 127 |
+
value=False,
|
| 128 |
+
interactive=True,
|
| 129 |
+
elem_classes=["history-view-button"]
|
| 130 |
+
)
|
| 131 |
+
|
| 132 |
+
|
| 133 |
# Model selection header (clickable toggle)
|
| 134 |
model_toggle_button = gr.Button(
|
| 135 |
f"► Select model ({len(Ci_results.available_models)})",
|
|
|
|
| 178 |
|
| 179 |
# Detailed view components (hidden by default)
|
| 180 |
with gr.Column(visible=False, elem_classes=["detail-view"]) as detail_view:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 181 |
# Create the plot output
|
| 182 |
plot_output = gr.Plot(
|
| 183 |
label="",
|
|
|
|
| 213 |
# Time-series summary displays (multiple Gradio plots)
|
| 214 |
time_series_failure_rates = gr.LinePlot(
|
| 215 |
label="",
|
| 216 |
+
x="date",
|
| 217 |
+
y="failure_rate",
|
| 218 |
+
color="platform",
|
| 219 |
+
color_map={"AMD": "#FF6B6B", "NVIDIA": "#4ECDC4"},
|
| 220 |
+
title="Overall Failure Rates Over Time",
|
| 221 |
+
tooltip=["failure_rate", "date", "change"],
|
| 222 |
+
height=300,
|
| 223 |
+
x_label_angle=45,
|
| 224 |
+
y_title="Failure Rate (%)",
|
| 225 |
elem_classes=["plot-container"]
|
| 226 |
)
|
| 227 |
|
| 228 |
time_series_amd_tests = gr.LinePlot(
|
| 229 |
label="",
|
| 230 |
+
x="date",
|
| 231 |
+
y="count",
|
| 232 |
+
color="test_type",
|
| 233 |
+
color_map={"Passed": "#4CAF50", "Failed": "#E53E3E", "Skipped": "#FFA500"},
|
| 234 |
+
title="AMD Test Results Over Time",
|
| 235 |
+
tooltip=["count", "date", "change"],
|
| 236 |
+
height=300,
|
| 237 |
+
x_label_angle=45,
|
| 238 |
+
y_title="Number of Tests",
|
| 239 |
elem_classes=["plot-container"]
|
| 240 |
)
|
| 241 |
|
| 242 |
time_series_nvidia_tests = gr.LinePlot(
|
| 243 |
label="",
|
| 244 |
+
x="date",
|
| 245 |
+
y="count",
|
| 246 |
+
color="test_type",
|
| 247 |
+
color_map={"Passed": "#4CAF50", "Failed": "#E53E3E", "Skipped": "#FFA500"},
|
| 248 |
+
title="NVIDIA Test Results Over Time",
|
| 249 |
+
tooltip=["count", "date", "change"],
|
| 250 |
+
height=300,
|
| 251 |
+
x_label_angle=45,
|
| 252 |
+
y_title="Number of Tests",
|
| 253 |
elem_classes=["plot-container"]
|
| 254 |
)
|
| 255 |
|
| 256 |
# Time-series model view (hidden by default)
|
| 257 |
with gr.Column(visible=False, elem_classes=["time-series-detail-view"]) as time_series_detail_view:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 258 |
# Time-series plots for specific model (with spacing)
|
| 259 |
time_series_amd_model_plot = gr.LinePlot(
|
| 260 |
label="",
|
| 261 |
+
x="date",
|
| 262 |
+
y="count",
|
| 263 |
+
color="test_type",
|
| 264 |
+
color_map={"Passed": "#4CAF50", "Failed": "#E53E3E", "Skipped": "#FFA500"},
|
| 265 |
+
title="AMD Results Over Time",
|
| 266 |
+
tooltip=["count", "date", "change"],
|
| 267 |
+
height=300,
|
| 268 |
+
x_label_angle=45,
|
| 269 |
+
y_title="Number of Tests",
|
| 270 |
elem_classes=["plot-container"]
|
| 271 |
)
|
| 272 |
|
| 273 |
time_series_nvidia_model_plot = gr.LinePlot(
|
| 274 |
label="",
|
| 275 |
+
x="date",
|
| 276 |
+
y="count",
|
| 277 |
+
color="test_type",
|
| 278 |
+
color_map={"Passed": "#4CAF50", "Failed": "#E53E3E", "Skipped": "#FFA500"},
|
| 279 |
+
title="NVIDIA Results Over Time",
|
| 280 |
+
tooltip=["count", "date", "change"],
|
| 281 |
+
height=300,
|
| 282 |
+
x_label_angle=45,
|
| 283 |
+
y_title="Number of Tests",
|
| 284 |
elem_classes=["plot-container"]
|
| 285 |
)
|
| 286 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 287 |
# Model toggle functionality
|
| 288 |
def toggle_model_list(current_visible):
|
| 289 |
"""Toggle the visibility of the model list."""
|
|
|
|
| 302 |
|
| 303 |
# Track model list visibility state
|
| 304 |
model_list_visible = gr.State(False)
|
| 305 |
+
# Track last selected model for mode switches
|
| 306 |
+
selected_model_state = gr.State(None)
|
| 307 |
+
# Track whether current view is model detail (True) or summary (False)
|
| 308 |
+
in_model_view_state = gr.State(False)
|
| 309 |
|
| 310 |
model_toggle_button.click(
|
| 311 |
fn=toggle_model_list,
|
|
|
|
| 313 |
outputs=[model_toggle_button, model_list_container, model_list_visible]
|
| 314 |
)
|
| 315 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 316 |
|
| 317 |
+
# Unified summary handler: respects History toggle
|
| 318 |
+
def handle_summary_click(history_mode: bool):
|
| 319 |
+
description = get_description_text()
|
| 320 |
+
links = get_ci_links()
|
| 321 |
+
fr_plot, amd_plot, nvidia_plot = get_historical_summary_plots()
|
| 322 |
+
if history_mode:
|
| 323 |
+
return (
|
| 324 |
+
description,
|
| 325 |
+
links,
|
| 326 |
+
gr.update(visible=False), # current_view
|
| 327 |
+
gr.update(visible=True), # historical_view
|
| 328 |
+
gr.update(visible=False), # summary_display
|
| 329 |
+
gr.update(visible=False), # detail_view
|
| 330 |
+
fr_plot,
|
| 331 |
+
amd_plot,
|
| 332 |
+
nvidia_plot,
|
| 333 |
+
gr.update(visible=False), # time_series_detail_view
|
| 334 |
+
False, # in_model_view_state
|
| 335 |
+
)
|
| 336 |
+
else:
|
| 337 |
+
fig = create_summary_page(Ci_results.df, Ci_results.available_models)
|
| 338 |
+
return (
|
| 339 |
+
description,
|
| 340 |
+
links,
|
| 341 |
+
gr.update(visible=True), # current_view
|
| 342 |
+
gr.update(visible=False), # historical_view
|
| 343 |
+
gr.update(value=fig, visible=True), # summary_display
|
| 344 |
+
gr.update(visible=False), # detail_view
|
| 345 |
+
gr.update(visible=False), # time_series_failure_rates
|
| 346 |
+
gr.update(visible=False), # time_series_amd_tests
|
| 347 |
+
gr.update(visible=False), # time_series_nvidia_tests
|
| 348 |
+
gr.update(visible=False), # time_series_detail_view
|
| 349 |
+
False, # in_model_view_state
|
| 350 |
+
)
|
| 351 |
|
| 352 |
summary_button.click(
|
| 353 |
+
fn=handle_summary_click,
|
| 354 |
+
inputs=[history_view_button],
|
| 355 |
+
outputs=[
|
| 356 |
+
description_display,
|
| 357 |
+
ci_links_display,
|
| 358 |
+
current_view,
|
| 359 |
+
historical_view,
|
| 360 |
+
summary_display,
|
| 361 |
+
detail_view,
|
| 362 |
+
time_series_failure_rates,
|
| 363 |
+
time_series_amd_tests,
|
| 364 |
+
time_series_nvidia_tests,
|
| 365 |
+
time_series_detail_view,
|
| 366 |
+
in_model_view_state,
|
| 367 |
+
],
|
| 368 |
)
|
| 369 |
|
| 370 |
# Function to get CI job links
|
|
|
|
| 437 |
return "🔗 **CI Jobs:** *Error loading links*\n\n❓ **[FAQ](README.md)**"
|
| 438 |
|
| 439 |
|
| 440 |
+
|
| 441 |
+
|
| 442 |
+
def get_historical_summary_plots():
|
| 443 |
+
"""Get historical summary plots from preloaded data."""
|
| 444 |
+
dfs = get_time_series_summary_dfs(Ci_results.historical_df)
|
| 445 |
+
return (
|
| 446 |
+
gr.update(value=dfs['failure_rates_df'], visible=True),
|
| 447 |
+
gr.update(value=dfs['amd_tests_df'], visible=True),
|
| 448 |
+
gr.update(value=dfs['nvidia_tests_df'], visible=True),
|
| 449 |
+
)
|
| 450 |
+
|
| 451 |
+
def handle_history_toggle(history_mode, last_selected_model, in_model_view):
|
| 452 |
+
if history_mode:
|
| 453 |
+
# If currently in model view and valid model, show historical model detail
|
| 454 |
+
if in_model_view and last_selected_model:
|
| 455 |
+
amd_ts, nvidia_ts = show_time_series_model(last_selected_model)
|
| 456 |
+
return (
|
| 457 |
+
gr.update(visible=False), # current_view
|
| 458 |
+
gr.update(visible=True), # historical_view
|
| 459 |
+
gr.update(visible=False), # summary_display
|
| 460 |
+
gr.update(visible=False), # detail_view
|
| 461 |
+
gr.update(visible=False), # time_series_failure_rates
|
| 462 |
+
gr.update(visible=False), # time_series_amd_tests
|
| 463 |
+
gr.update(visible=False), # time_series_nvidia_tests
|
| 464 |
+
amd_ts, # time_series_amd_model_plot
|
| 465 |
+
nvidia_ts, # time_series_nvidia_model_plot
|
| 466 |
+
gr.update(visible=True), # time_series_detail_view
|
| 467 |
+
gr.update(), # plot_output
|
| 468 |
+
gr.update(), # amd_failed_tests_output
|
| 469 |
+
gr.update(), # nvidia_failed_tests_output
|
| 470 |
+
True, # in_model_view_state (still in model view)
|
| 471 |
+
)
|
| 472 |
+
# Otherwise show historical summary
|
| 473 |
+
fr_plot, amd_plot, nvidia_plot = get_historical_summary_plots()
|
| 474 |
+
return (
|
| 475 |
+
gr.update(visible=False), # current_view
|
| 476 |
+
gr.update(visible=True), # historical_view
|
| 477 |
+
gr.update(visible=False), # summary_display
|
| 478 |
+
gr.update(visible=False), # detail_view
|
| 479 |
+
fr_plot, # time_series_failure_rates (value + keep visibility)
|
| 480 |
+
amd_plot, # time_series_amd_tests
|
| 481 |
+
nvidia_plot, # time_series_nvidia_tests
|
| 482 |
+
gr.update(), # time_series_amd_model_plot
|
| 483 |
+
gr.update(), # time_series_nvidia_model_plot
|
| 484 |
+
gr.update(visible=False), # time_series_detail_view
|
| 485 |
+
gr.update(), # plot_output
|
| 486 |
+
gr.update(), # amd_failed_tests_output
|
| 487 |
+
gr.update(), # nvidia_failed_tests_output
|
| 488 |
+
False, # in_model_view_state
|
| 489 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 490 |
else:
|
| 491 |
+
# Switch to current mode: show model if selected; otherwise summary
|
| 492 |
+
if last_selected_model and Ci_results.df is not None and not Ci_results.df.empty and last_selected_model in Ci_results.df.index:
|
| 493 |
+
fig, amd_txt, nvidia_txt = plot_model_stats(Ci_results.df, last_selected_model)
|
| 494 |
+
return (
|
| 495 |
+
gr.update(visible=True), # current_view
|
| 496 |
+
gr.update(visible=False), # historical_view
|
| 497 |
+
gr.update(visible=False), # summary_display
|
| 498 |
+
gr.update(visible=True), # detail_view
|
| 499 |
+
gr.update(visible=False), # time_series_failure_rates
|
| 500 |
+
gr.update(visible=False), # time_series_amd_tests
|
| 501 |
+
gr.update(visible=False), # time_series_nvidia_tests
|
| 502 |
+
gr.update(), # time_series_amd_model_plot
|
| 503 |
+
gr.update(), # time_series_nvidia_model_plot
|
| 504 |
+
gr.update(visible=False), # time_series_detail_view
|
| 505 |
+
fig, # plot_output
|
| 506 |
+
amd_txt, # amd_failed_tests_output
|
| 507 |
+
nvidia_txt, # nvidia_failed_tests_output
|
| 508 |
+
True, # in_model_view_state
|
| 509 |
+
)
|
| 510 |
+
else:
|
| 511 |
+
fig = create_summary_page(Ci_results.df, Ci_results.available_models)
|
| 512 |
+
return (
|
| 513 |
+
gr.update(visible=True), # current_view
|
| 514 |
+
gr.update(visible=False), # historical_view
|
| 515 |
+
gr.update(value=fig, visible=True), # summary_display
|
| 516 |
+
gr.update(visible=False), # detail_view
|
| 517 |
+
gr.update(visible=False), # time_series_failure_rates
|
| 518 |
+
gr.update(visible=False), # time_series_amd_tests
|
| 519 |
+
gr.update(visible=False), # time_series_nvidia_tests
|
| 520 |
+
gr.update(), # time_series_amd_model_plot
|
| 521 |
+
gr.update(), # time_series_nvidia_model_plot
|
| 522 |
+
gr.update(visible=False), # time_series_detail_view
|
| 523 |
+
gr.update(), # plot_output
|
| 524 |
+
gr.update(), # amd_failed_tests_output
|
| 525 |
+
gr.update(), # nvidia_failed_tests_output
|
| 526 |
+
False, # in_model_view_state
|
| 527 |
+
)
|
| 528 |
|
| 529 |
+
history_view_button.change(
|
| 530 |
+
fn=handle_history_toggle,
|
| 531 |
+
inputs=[history_view_button, selected_model_state, in_model_view_state],
|
| 532 |
+
outputs=[
|
| 533 |
+
current_view,
|
| 534 |
+
historical_view,
|
| 535 |
+
summary_display,
|
| 536 |
+
detail_view,
|
| 537 |
+
time_series_failure_rates,
|
| 538 |
+
time_series_amd_tests,
|
| 539 |
+
time_series_nvidia_tests,
|
| 540 |
+
time_series_amd_model_plot,
|
| 541 |
+
time_series_nvidia_model_plot,
|
| 542 |
+
time_series_detail_view,
|
| 543 |
+
plot_output,
|
| 544 |
+
amd_failed_tests_output,
|
| 545 |
+
nvidia_failed_tests_output,
|
| 546 |
+
in_model_view_state,
|
| 547 |
+
],
|
| 548 |
)
|
| 549 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 550 |
|
| 551 |
# Time-series model selection functionality
|
| 552 |
def show_time_series_model(selected_model):
|
| 553 |
"""Show time-series view for a specific model."""
|
| 554 |
+
dfs = get_model_time_series_dfs(Ci_results.historical_df, selected_model)
|
| 555 |
+
return (
|
| 556 |
+
gr.update(value=dfs['amd_df'], visible=True, title=f"{selected_model.upper()} - AMD Results Over Time"),
|
| 557 |
+
gr.update(value=dfs['nvidia_df'], visible=True, title=f"{selected_model.upper()} - NVIDIA Results Over Time"),
|
| 558 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 559 |
|
| 560 |
+
# Unified model click handler: respects History toggle
|
| 561 |
+
def handle_model_click(selected_model: str, history_mode: bool):
|
| 562 |
+
if history_mode:
|
| 563 |
+
amd_ts, nvidia_ts = show_time_series_model(selected_model)
|
| 564 |
+
return (
|
| 565 |
+
gr.update(), # plot_output
|
| 566 |
+
gr.update(), # amd_failed_tests_output
|
| 567 |
+
gr.update(), # nvidia_failed_tests_output
|
| 568 |
+
gr.update(visible=False), # current_view
|
| 569 |
+
gr.update(visible=True), # historical_view
|
| 570 |
+
gr.update(visible=False), # summary_display
|
| 571 |
+
gr.update(visible=False), # detail_view
|
| 572 |
+
gr.update(visible=False), # time_series_failure_rates
|
| 573 |
+
gr.update(visible=False), # time_series_amd_tests
|
| 574 |
+
gr.update(visible=False), # time_series_nvidia_tests
|
| 575 |
+
amd_ts, # time_series_amd_model_plot
|
| 576 |
+
nvidia_ts, # time_series_nvidia_model_plot
|
| 577 |
+
gr.update(visible=True), # time_series_detail_view
|
| 578 |
+
selected_model, True) # selected_model_state, in_model_view_state
|
| 579 |
+
else:
|
| 580 |
+
fig, amd_txt, nvidia_txt = plot_model_stats(Ci_results.df, selected_model)
|
| 581 |
+
return (
|
| 582 |
+
fig,
|
| 583 |
+
amd_txt,
|
| 584 |
+
nvidia_txt,
|
| 585 |
+
gr.update(visible=True), # current_view
|
| 586 |
+
gr.update(visible=False), # historical_view
|
| 587 |
+
gr.update(visible=False), # summary_display
|
| 588 |
+
gr.update(visible=True), # detail_view
|
| 589 |
+
gr.update(), # time_series_failure_rates
|
| 590 |
+
gr.update(), # time_series_amd_tests
|
| 591 |
+
gr.update(), # time_series_nvidia_tests
|
| 592 |
+
gr.update(), # time_series_amd_model_plot
|
| 593 |
+
gr.update(), # time_series_nvidia_model_plot
|
| 594 |
+
gr.update(visible=False), # time_series_detail_view
|
| 595 |
+
selected_model, True) # selected_model_state, in_model_view_state
|
| 596 |
|
|
|
|
| 597 |
for i, btn in enumerate(model_buttons):
|
| 598 |
model_name = model_choices[i]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 599 |
btn.click(
|
| 600 |
+
fn=lambda history_mode, m=model_name: handle_model_click(m, history_mode),
|
| 601 |
+
inputs=[history_view_button],
|
| 602 |
+
outputs=[
|
| 603 |
+
plot_output,
|
| 604 |
+
amd_failed_tests_output,
|
| 605 |
+
nvidia_failed_tests_output,
|
| 606 |
+
current_view,
|
| 607 |
+
historical_view,
|
| 608 |
+
summary_display,
|
| 609 |
+
detail_view,
|
| 610 |
+
time_series_failure_rates,
|
| 611 |
+
time_series_amd_tests,
|
| 612 |
+
time_series_nvidia_tests,
|
| 613 |
+
time_series_amd_model_plot,
|
| 614 |
+
time_series_nvidia_model_plot,
|
| 615 |
+
time_series_detail_view,
|
| 616 |
+
selected_model_state,
|
| 617 |
+
in_model_view_state,
|
| 618 |
+
],
|
| 619 |
)
|
| 620 |
|
| 621 |
# Auto-update CI links when the interface loads
|
data.py
CHANGED
|
@@ -57,6 +57,8 @@ def log_dataframe_link(link: str) -> str:
|
|
| 57 |
Adds the link to the dataset in the logs, modifies it to get a clockable link and then returns the date of the
|
| 58 |
report.
|
| 59 |
"""
|
|
|
|
|
|
|
| 60 |
logger.info(f"Reading df located at {link}")
|
| 61 |
# Make sure the links starts with an http adress
|
| 62 |
if link.startswith("hf://"):
|
|
@@ -231,8 +233,10 @@ def get_data_for_date(target_date: str) -> tuple[pd.DataFrame, str]:
|
|
| 231 |
return pd.DataFrame(), target_date
|
| 232 |
|
| 233 |
|
| 234 |
-
def get_historical_data(start_date: str, end_date: str) -> pd.DataFrame:
|
| 235 |
"""Get historical data for a date range."""
|
|
|
|
|
|
|
| 236 |
try:
|
| 237 |
start_dt = datetime.strptime(start_date, "%Y-%m-%d")
|
| 238 |
end_dt = datetime.strptime(end_date, "%Y-%m-%d")
|
|
@@ -256,11 +260,6 @@ def get_historical_data(start_date: str, end_date: str) -> pd.DataFrame:
|
|
| 256 |
|
| 257 |
current_dt += timedelta(days=1)
|
| 258 |
|
| 259 |
-
if not historical_data:
|
| 260 |
-
logger.warning("No historical data found for the specified range, falling back to fake data")
|
| 261 |
-
# Fall back to fake data when no real data is available
|
| 262 |
-
return get_fake_historical_data(start_date, end_date)
|
| 263 |
-
|
| 264 |
# Combine all dataframes
|
| 265 |
combined_df = pd.concat(historical_data, ignore_index=False)
|
| 266 |
return combined_df
|
|
@@ -418,6 +417,7 @@ class CIResults:
|
|
| 418 |
self.available_dates = []
|
| 419 |
self.historical_df = pd.DataFrame()
|
| 420 |
self.all_historical_data = pd.DataFrame() # Store all historical data at startup
|
|
|
|
| 421 |
|
| 422 |
def load_data(self) -> None:
|
| 423 |
"""Load data from the data source."""
|
|
@@ -442,16 +442,10 @@ class CIResults:
|
|
| 442 |
"Falling back on sample data."
|
| 443 |
]
|
| 444 |
logger.error("\n".join(error_msg))
|
|
|
|
| 445 |
new_df, latest_update_msg = get_sample_data()
|
| 446 |
self.latest_update_msg = latest_update_msg
|
| 447 |
-
|
| 448 |
-
fake_dates = []
|
| 449 |
-
today = datetime.now()
|
| 450 |
-
for i in range(7):
|
| 451 |
-
date = today - timedelta(days=i)
|
| 452 |
-
fake_dates.append(date.strftime("%Y-%m-%d"))
|
| 453 |
-
self.available_dates = fake_dates
|
| 454 |
-
logger.info(f"Generated {len(self.available_dates)} fake dates: {self.available_dates[:3]}...")
|
| 455 |
|
| 456 |
# Update attributes
|
| 457 |
self.df = new_df
|
|
@@ -481,15 +475,20 @@ class CIResults:
|
|
| 481 |
"""Load all available historical data at startup."""
|
| 482 |
try:
|
| 483 |
if not self.available_dates:
|
| 484 |
-
|
| 485 |
-
|
| 486 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 487 |
|
| 488 |
logger.info(f"Loading all historical data for {len(self.available_dates)} dates...")
|
| 489 |
start_date = self.available_dates[-1] # Oldest date
|
| 490 |
end_date = self.available_dates[0] # Newest date
|
| 491 |
|
| 492 |
-
self.all_historical_data = get_historical_data(start_date, end_date)
|
| 493 |
logger.info(f"All historical data loaded: {len(self.all_historical_data)} records")
|
| 494 |
except Exception as e:
|
| 495 |
logger.error(f"Error loading all historical data: {e}")
|
|
|
|
| 57 |
Adds the link to the dataset in the logs, modifies it to get a clockable link and then returns the date of the
|
| 58 |
report.
|
| 59 |
"""
|
| 60 |
+
if link.startswith("sample_"):
|
| 61 |
+
return "9999-99-99"
|
| 62 |
logger.info(f"Reading df located at {link}")
|
| 63 |
# Make sure the links starts with an http adress
|
| 64 |
if link.startswith("hf://"):
|
|
|
|
| 233 |
return pd.DataFrame(), target_date
|
| 234 |
|
| 235 |
|
| 236 |
+
def get_historical_data(start_date: str, end_date: str, sample_data = False) -> pd.DataFrame:
|
| 237 |
"""Get historical data for a date range."""
|
| 238 |
+
if sample_data:
|
| 239 |
+
return get_fake_historical_data(start_date, end_date)
|
| 240 |
try:
|
| 241 |
start_dt = datetime.strptime(start_date, "%Y-%m-%d")
|
| 242 |
end_dt = datetime.strptime(end_date, "%Y-%m-%d")
|
|
|
|
| 260 |
|
| 261 |
current_dt += timedelta(days=1)
|
| 262 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 263 |
# Combine all dataframes
|
| 264 |
combined_df = pd.concat(historical_data, ignore_index=False)
|
| 265 |
return combined_df
|
|
|
|
| 417 |
self.available_dates = []
|
| 418 |
self.historical_df = pd.DataFrame()
|
| 419 |
self.all_historical_data = pd.DataFrame() # Store all historical data at startup
|
| 420 |
+
self.sample_data = False
|
| 421 |
|
| 422 |
def load_data(self) -> None:
|
| 423 |
"""Load data from the data source."""
|
|
|
|
| 442 |
"Falling back on sample data."
|
| 443 |
]
|
| 444 |
logger.error("\n".join(error_msg))
|
| 445 |
+
self.sample_data = True
|
| 446 |
new_df, latest_update_msg = get_sample_data()
|
| 447 |
self.latest_update_msg = latest_update_msg
|
| 448 |
+
self.available_dates = None
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 449 |
|
| 450 |
# Update attributes
|
| 451 |
self.df = new_df
|
|
|
|
| 475 |
"""Load all available historical data at startup."""
|
| 476 |
try:
|
| 477 |
if not self.available_dates:
|
| 478 |
+
# Generate fake dates when no real dates are available
|
| 479 |
+
fake_dates = []
|
| 480 |
+
today = datetime.now()
|
| 481 |
+
for i in range(7):
|
| 482 |
+
date = today - timedelta(days=i)
|
| 483 |
+
fake_dates.append(date.strftime("%Y-%m-%d"))
|
| 484 |
+
self.available_dates = fake_dates
|
| 485 |
+
logger.info(f"No available dates found, generated {len(self.available_dates)} sample dates.")
|
| 486 |
|
| 487 |
logger.info(f"Loading all historical data for {len(self.available_dates)} dates...")
|
| 488 |
start_date = self.available_dates[-1] # Oldest date
|
| 489 |
end_date = self.available_dates[0] # Newest date
|
| 490 |
|
| 491 |
+
self.all_historical_data = get_historical_data(start_date, end_date, self.sample_data)
|
| 492 |
logger.info(f"All historical data loaded: {len(self.all_historical_data)} records")
|
| 493 |
except Exception as e:
|
| 494 |
logger.error(f"Error loading all historical data: {e}")
|
requirements.txt
CHANGED
|
@@ -1 +1,2 @@
|
|
| 1 |
matplotlib>=3.8
|
|
|
|
|
|
| 1 |
matplotlib>=3.8
|
| 2 |
+
gradio_toggle
|
styles.css
CHANGED
|
@@ -175,6 +175,25 @@ div[data-testid="column"]:has(.sidebar) {
|
|
| 175 |
transition: max-height 0.3s ease !important;
|
| 176 |
}
|
| 177 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 178 |
|
| 179 |
/* Model button styling */
|
| 180 |
.model-button {
|
|
@@ -373,53 +392,28 @@ div[data-testid="column"]:has(.sidebar) {
|
|
| 373 |
|
| 374 |
/* Plot container with smooth transitions and controlled scrolling */
|
| 375 |
.plot-container {
|
| 376 |
-
background-color: #000000 !important;
|
| 377 |
border: none !important;
|
| 378 |
transition: opacity 0.6s ease-in-out !important;
|
| 379 |
flex: 1 1 auto !important;
|
| 380 |
min-height: 0 !important;
|
| 381 |
overflow-y: auto !important;
|
| 382 |
scrollbar-width: thin !important;
|
| 383 |
-
scrollbar-color: #333333 #000000 !important;
|
| 384 |
padding: 0 !important;
|
| 385 |
}
|
| 386 |
|
| 387 |
/* Custom scrollbar for plot container */
|
| 388 |
.plot-container::-webkit-scrollbar {
|
| 389 |
width: 8px !important;
|
| 390 |
-
background: #000000 !important;
|
| 391 |
-
}
|
| 392 |
-
|
| 393 |
-
.plot-container::-webkit-scrollbar-track {
|
| 394 |
-
background: #000000 !important;
|
| 395 |
-
}
|
| 396 |
-
|
| 397 |
-
.plot-container::-webkit-scrollbar-thumb {
|
| 398 |
-
background-color: #333333 !important;
|
| 399 |
-
border-radius: 4px !important;
|
| 400 |
-
}
|
| 401 |
-
|
| 402 |
-
.plot-container::-webkit-scrollbar-thumb:hover {
|
| 403 |
-
background-color: #555555 !important;
|
| 404 |
}
|
| 405 |
|
| 406 |
-
/* Gradio plot component styling */
|
| 407 |
-
.gr-plot {
|
| 408 |
-
background-color: #000000 !important;
|
| 409 |
-
transition: opacity 0.6s ease-in-out !important;
|
| 410 |
-
}
|
| 411 |
|
| 412 |
-
.gr-plot .gradio-plot {
|
| 413 |
-
background-color: #000000 !important;
|
| 414 |
-
transition: opacity 0.6s ease-in-out !important;
|
| 415 |
-
}
|
| 416 |
|
| 417 |
.gr-plot img {
|
| 418 |
transition: opacity 0.6s ease-in-out !important;
|
| 419 |
}
|
| 420 |
|
| 421 |
/* Target the plot wrapper */
|
| 422 |
-
div[data-testid="
|
| 423 |
background-color: #000000 !important;
|
| 424 |
}
|
| 425 |
|
|
@@ -430,11 +424,6 @@ div[data-testid="plot"] {
|
|
| 430 |
background-color: #000000 !important;
|
| 431 |
}
|
| 432 |
|
| 433 |
-
/* Ensure plot area background */
|
| 434 |
-
.gr-plot > div,
|
| 435 |
-
.plot-container > div {
|
| 436 |
-
background-color: #000000 !important;
|
| 437 |
-
}
|
| 438 |
|
| 439 |
/* Prevent white flash during plot updates */
|
| 440 |
.plot-container::before {
|
|
@@ -448,24 +437,26 @@ div[data-testid="plot"] {
|
|
| 448 |
z-index: -1;
|
| 449 |
}
|
| 450 |
|
| 451 |
-
|
| 452 |
-
|
| 453 |
-
.gr-plot *,
|
| 454 |
-
div[data-testid="plot"] * {
|
| 455 |
-
background-color: #000000 !important;
|
| 456 |
}
|
| 457 |
|
| 458 |
-
/* Override any white backgrounds in matplotlib */
|
| 459 |
-
.plot-container canvas,
|
| 460 |
-
.gr-plot canvas {
|
| 461 |
-
background-color: #000000 !important;
|
| 462 |
-
}
|
| 463 |
|
| 464 |
/* Text elements */
|
| 465 |
h1, h2, h3, p, .markdown {
|
| 466 |
color: white !important;
|
| 467 |
}
|
| 468 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 469 |
/* Sidebar header enhancement */
|
| 470 |
.sidebar h1 {
|
| 471 |
background: linear-gradient(45deg, #74b9ff, #a29bfe) !important;
|
|
|
|
| 175 |
transition: max-height 0.3s ease !important;
|
| 176 |
}
|
| 177 |
|
| 178 |
+
.history-view-button {
|
| 179 |
+
background: linear-gradient(135deg, #2a2a2a, #1e1e1e) !important;
|
| 180 |
+
color: white !important;
|
| 181 |
+
margin: 0px 0px !important;
|
| 182 |
+
padding: 8px 12px !important;
|
| 183 |
+
font-weight: 600 !important;
|
| 184 |
+
font-size: 14px !important;
|
| 185 |
+
text-transform: uppercase !important;
|
| 186 |
+
letter-spacing: 0.3px !important;
|
| 187 |
+
font-family: monospace !important;
|
| 188 |
+
width: 100% !important;
|
| 189 |
+
max-width: 100% !important;
|
| 190 |
+
white-space: nowrap !important;
|
| 191 |
+
text-overflow: ellipsis !important;
|
| 192 |
+
display: block !important;
|
| 193 |
+
cursor: pointer !important;
|
| 194 |
+
transition: all 0.3s ease !important;
|
| 195 |
+
}
|
| 196 |
+
|
| 197 |
|
| 198 |
/* Model button styling */
|
| 199 |
.model-button {
|
|
|
|
| 392 |
|
| 393 |
/* Plot container with smooth transitions and controlled scrolling */
|
| 394 |
.plot-container {
|
|
|
|
| 395 |
border: none !important;
|
| 396 |
transition: opacity 0.6s ease-in-out !important;
|
| 397 |
flex: 1 1 auto !important;
|
| 398 |
min-height: 0 !important;
|
| 399 |
overflow-y: auto !important;
|
| 400 |
scrollbar-width: thin !important;
|
|
|
|
| 401 |
padding: 0 !important;
|
| 402 |
}
|
| 403 |
|
| 404 |
/* Custom scrollbar for plot container */
|
| 405 |
.plot-container::-webkit-scrollbar {
|
| 406 |
width: 8px !important;
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 407 |
}
|
| 408 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 409 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 410 |
|
| 411 |
.gr-plot img {
|
| 412 |
transition: opacity 0.6s ease-in-out !important;
|
| 413 |
}
|
| 414 |
|
| 415 |
/* Target the plot wrapper */
|
| 416 |
+
div[data-testid="matplotlib"] {
|
| 417 |
background-color: #000000 !important;
|
| 418 |
}
|
| 419 |
|
|
|
|
| 424 |
background-color: #000000 !important;
|
| 425 |
}
|
| 426 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 427 |
|
| 428 |
/* Prevent white flash during plot updates */
|
| 429 |
.plot-container::before {
|
|
|
|
| 437 |
z-index: -1;
|
| 438 |
}
|
| 439 |
|
| 440 |
+
.vega-embed {
|
| 441 |
+
position: absolute !important;
|
|
|
|
|
|
|
|
|
|
| 442 |
}
|
| 443 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 444 |
|
| 445 |
/* Text elements */
|
| 446 |
h1, h2, h3, p, .markdown {
|
| 447 |
color: white !important;
|
| 448 |
}
|
| 449 |
|
| 450 |
+
.toggle {
|
| 451 |
+
margin: 0 auto !important;
|
| 452 |
+
}
|
| 453 |
+
|
| 454 |
+
.toggle-label {
|
| 455 |
+
color: white !important;
|
| 456 |
+
font-family: monospace !important;
|
| 457 |
+
font-size: 14px !important;
|
| 458 |
+
}
|
| 459 |
+
|
| 460 |
/* Sidebar header enhancement */
|
| 461 |
.sidebar h1 {
|
| 462 |
background: linear-gradient(45deg, #74b9ff, #a29bfe) !important;
|
time_series_gradio.py
CHANGED
|
@@ -4,6 +4,126 @@ from datetime import datetime
|
|
| 4 |
from data import extract_model_data
|
| 5 |
import gradio as gr
|
| 6 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 7 |
def create_time_series_summary_gradio(historical_df: pd.DataFrame) -> dict:
|
| 8 |
"""Create time-series visualization for overall failure rates over time using Gradio native plots."""
|
| 9 |
if historical_df.empty or 'date' not in historical_df.columns:
|
|
|
|
| 4 |
from data import extract_model_data
|
| 5 |
import gradio as gr
|
| 6 |
|
| 7 |
+
def get_time_series_summary_dfs(historical_df: pd.DataFrame) -> dict:
|
| 8 |
+
"""Return dataframes for historical summary plots (failure rates, AMD tests, NVIDIA tests)."""
|
| 9 |
+
|
| 10 |
+
# Group by date to get daily statistics
|
| 11 |
+
daily_stats = []
|
| 12 |
+
dates = sorted(historical_df['date'].unique())
|
| 13 |
+
for date in dates:
|
| 14 |
+
date_data = historical_df[historical_df['date'] == date]
|
| 15 |
+
amd_passed = date_data['success_amd'].sum() if 'success_amd' in date_data.columns else 0
|
| 16 |
+
amd_failed = (date_data['failed_multi_no_amd'].sum() + date_data['failed_single_no_amd'].sum()) if 'failed_multi_no_amd' in date_data.columns else 0
|
| 17 |
+
amd_skipped = date_data['skipped_amd'].sum() if 'skipped_amd' in date_data.columns else 0
|
| 18 |
+
amd_total = amd_passed + amd_failed + amd_skipped
|
| 19 |
+
amd_failure_rate = (amd_failed / amd_total * 100) if amd_total > 0 else 0
|
| 20 |
+
|
| 21 |
+
nvidia_passed = date_data['success_nvidia'].sum() if 'success_nvidia' in date_data.columns else 0
|
| 22 |
+
nvidia_failed = (date_data['failed_multi_no_nvidia'].sum() + date_data['failed_single_no_nvidia'].sum()) if 'failed_multi_no_nvidia' in date_data.columns else 0
|
| 23 |
+
nvidia_skipped = date_data['skipped_nvidia'].sum() if 'skipped_nvidia' in date_data.columns else 0
|
| 24 |
+
nvidia_total = nvidia_passed + nvidia_failed + nvidia_skipped
|
| 25 |
+
nvidia_failure_rate = (nvidia_failed / nvidia_total * 100) if nvidia_total > 0 else 0
|
| 26 |
+
|
| 27 |
+
daily_stats.append({
|
| 28 |
+
'date': date,
|
| 29 |
+
'amd_failure_rate': amd_failure_rate,
|
| 30 |
+
'nvidia_failure_rate': nvidia_failure_rate,
|
| 31 |
+
'amd_passed': amd_passed,
|
| 32 |
+
'amd_failed': amd_failed,
|
| 33 |
+
'amd_skipped': amd_skipped,
|
| 34 |
+
'nvidia_passed': nvidia_passed,
|
| 35 |
+
'nvidia_failed': nvidia_failed,
|
| 36 |
+
'nvidia_skipped': nvidia_skipped
|
| 37 |
+
})
|
| 38 |
+
|
| 39 |
+
# Failure rate dataframe
|
| 40 |
+
failure_rate_data = []
|
| 41 |
+
for i, stat in enumerate(daily_stats):
|
| 42 |
+
amd_change = stat['amd_failure_rate'] - daily_stats[i-1]['amd_failure_rate'] if i > 0 else 0
|
| 43 |
+
nvidia_change = stat['nvidia_failure_rate'] - daily_stats[i-1]['nvidia_failure_rate'] if i > 0 else 0
|
| 44 |
+
failure_rate_data.extend([
|
| 45 |
+
{'date': stat['date'], 'failure_rate': stat['amd_failure_rate'], 'platform': 'AMD', 'change': amd_change},
|
| 46 |
+
{'date': stat['date'], 'failure_rate': stat['nvidia_failure_rate'], 'platform': 'NVIDIA', 'change': nvidia_change}
|
| 47 |
+
])
|
| 48 |
+
failure_rate_df = pd.DataFrame(failure_rate_data)
|
| 49 |
+
|
| 50 |
+
# AMD tests dataframe
|
| 51 |
+
amd_data = []
|
| 52 |
+
for i, stat in enumerate(daily_stats):
|
| 53 |
+
passed_change = stat['amd_passed'] - daily_stats[i-1]['amd_passed'] if i > 0 else 0
|
| 54 |
+
failed_change = stat['amd_failed'] - daily_stats[i-1]['amd_failed'] if i > 0 else 0
|
| 55 |
+
skipped_change = stat['amd_skipped'] - daily_stats[i-1]['amd_skipped'] if i > 0 else 0
|
| 56 |
+
amd_data.extend([
|
| 57 |
+
{'date': stat['date'], 'count': stat['amd_passed'], 'test_type': 'Passed', 'change': passed_change},
|
| 58 |
+
{'date': stat['date'], 'count': stat['amd_failed'], 'test_type': 'Failed', 'change': failed_change},
|
| 59 |
+
{'date': stat['date'], 'count': stat['amd_skipped'], 'test_type': 'Skipped', 'change': skipped_change}
|
| 60 |
+
])
|
| 61 |
+
amd_df = pd.DataFrame(amd_data)
|
| 62 |
+
|
| 63 |
+
# NVIDIA tests dataframe
|
| 64 |
+
nvidia_data = []
|
| 65 |
+
for i, stat in enumerate(daily_stats):
|
| 66 |
+
passed_change = stat['nvidia_passed'] - daily_stats[i-1]['nvidia_passed'] if i > 0 else 0
|
| 67 |
+
failed_change = stat['nvidia_failed'] - daily_stats[i-1]['nvidia_failed'] if i > 0 else 0
|
| 68 |
+
skipped_change = stat['nvidia_skipped'] - daily_stats[i-1]['nvidia_skipped'] if i > 0 else 0
|
| 69 |
+
nvidia_data.extend([
|
| 70 |
+
{'date': stat['date'], 'count': stat['nvidia_passed'], 'test_type': 'Passed', 'change': passed_change},
|
| 71 |
+
{'date': stat['date'], 'count': stat['nvidia_failed'], 'test_type': 'Failed', 'change': failed_change},
|
| 72 |
+
{'date': stat['date'], 'count': stat['nvidia_skipped'], 'test_type': 'Skipped', 'change': skipped_change}
|
| 73 |
+
])
|
| 74 |
+
nvidia_df = pd.DataFrame(nvidia_data)
|
| 75 |
+
|
| 76 |
+
return {
|
| 77 |
+
'failure_rates_df': failure_rate_df,
|
| 78 |
+
'amd_tests_df': amd_df,
|
| 79 |
+
'nvidia_tests_df': nvidia_df,
|
| 80 |
+
}
|
| 81 |
+
|
| 82 |
+
def get_model_time_series_dfs(historical_df: pd.DataFrame, model_name: str) -> dict:
|
| 83 |
+
"""Return dataframes for a specific model's historical plots (AMD, NVIDIA)."""
|
| 84 |
+
model_data = historical_df[historical_df.index.str.lower() == model_name.lower()]
|
| 85 |
+
|
| 86 |
+
if model_data.empty:
|
| 87 |
+
empty_df = pd.DataFrame({'date': [], 'count': [], 'test_type': [], 'change': []})
|
| 88 |
+
return {'amd_df': empty_df.copy(), 'nvidia_df': empty_df.copy()}
|
| 89 |
+
|
| 90 |
+
dates = sorted(model_data['date'].unique())
|
| 91 |
+
amd_data = []
|
| 92 |
+
nvidia_data = []
|
| 93 |
+
for i, date in enumerate(dates):
|
| 94 |
+
date_data = model_data[model_data['date'] == date]
|
| 95 |
+
row = date_data.iloc[0]
|
| 96 |
+
|
| 97 |
+
amd_passed = row.get('success_amd', 0)
|
| 98 |
+
amd_failed = row.get('failed_multi_no_amd', 0) + row.get('failed_single_no_amd', 0)
|
| 99 |
+
amd_skipped = row.get('skipped_amd', 0)
|
| 100 |
+
prev_row = model_data[model_data['date'] == dates[i-1]].iloc[0] if i > 0 and not model_data[model_data['date'] == dates[i-1]].empty else None
|
| 101 |
+
amd_passed_change = amd_passed - (prev_row.get('success_amd', 0) if prev_row is not None else 0)
|
| 102 |
+
amd_failed_change = amd_failed - (prev_row.get('failed_multi_no_amd', 0) + prev_row.get('failed_single_no_amd', 0) if prev_row is not None else 0)
|
| 103 |
+
amd_skipped_change = amd_skipped - (prev_row.get('skipped_amd', 0) if prev_row is not None else 0)
|
| 104 |
+
amd_data.extend([
|
| 105 |
+
{'date': date, 'count': amd_passed, 'test_type': 'Passed', 'change': amd_passed_change},
|
| 106 |
+
{'date': date, 'count': amd_failed, 'test_type': 'Failed', 'change': amd_failed_change},
|
| 107 |
+
{'date': date, 'count': amd_skipped, 'test_type': 'Skipped', 'change': amd_skipped_change}
|
| 108 |
+
])
|
| 109 |
+
|
| 110 |
+
nvidia_passed = row.get('success_nvidia', 0)
|
| 111 |
+
nvidia_failed = row.get('failed_multi_no_nvidia', 0) + row.get('failed_single_no_nvidia', 0)
|
| 112 |
+
nvidia_skipped = row.get('skipped_nvidia', 0)
|
| 113 |
+
if prev_row is not None:
|
| 114 |
+
prev_nvidia_passed = prev_row.get('success_nvidia', 0)
|
| 115 |
+
prev_nvidia_failed = prev_row.get('failed_multi_no_nvidia', 0) + prev_row.get('failed_single_no_nvidia', 0)
|
| 116 |
+
prev_nvidia_skipped = prev_row.get('skipped_nvidia', 0)
|
| 117 |
+
else:
|
| 118 |
+
prev_nvidia_passed = prev_nvidia_failed = prev_nvidia_skipped = 0
|
| 119 |
+
nvidia_data.extend([
|
| 120 |
+
{'date': date, 'count': nvidia_passed, 'test_type': 'Passed', 'change': nvidia_passed - prev_nvidia_passed},
|
| 121 |
+
{'date': date, 'count': nvidia_failed, 'test_type': 'Failed', 'change': nvidia_failed - prev_nvidia_failed},
|
| 122 |
+
{'date': date, 'count': nvidia_skipped, 'test_type': 'Skipped', 'change': nvidia_skipped - prev_nvidia_skipped}
|
| 123 |
+
])
|
| 124 |
+
|
| 125 |
+
return {'amd_df': pd.DataFrame(amd_data), 'nvidia_df': pd.DataFrame(nvidia_data)}
|
| 126 |
+
|
| 127 |
def create_time_series_summary_gradio(historical_df: pd.DataFrame) -> dict:
|
| 128 |
"""Create time-series visualization for overall failure rates over time using Gradio native plots."""
|
| 129 |
if historical_df.empty or 'date' not in historical_df.columns:
|