Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,52 +1,71 @@
|
|
| 1 |
import gradio as gr
|
|
|
|
|
|
|
| 2 |
from huggingface_hub import InferenceClient
|
| 3 |
|
| 4 |
-
|
| 5 |
-
|
| 6 |
-
""
|
| 7 |
-
|
| 8 |
-
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
):
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
messages.append({"role": "user", "content": val[0]})
|
| 23 |
-
if val[1]:
|
| 24 |
-
messages.append({"role": "assistant", "content": val[1]})
|
| 25 |
-
|
| 26 |
-
messages.append({"role": "user", "content": message})
|
| 27 |
-
|
| 28 |
-
response = ""
|
| 29 |
-
|
| 30 |
-
for message in client.chat_completion(
|
| 31 |
-
messages,
|
| 32 |
-
max_tokens=max_tokens,
|
| 33 |
-
stream=True,
|
| 34 |
-
temperature=temperature,
|
| 35 |
-
top_p=top_p,
|
| 36 |
-
):
|
| 37 |
-
token = message.choices[0].delta.content
|
| 38 |
-
|
| 39 |
-
response += token
|
| 40 |
-
yield response
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
"""
|
| 44 |
-
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
|
| 45 |
-
"""
|
| 46 |
-
demo = gr.ChatInterface(
|
| 47 |
-
respond,
|
| 48 |
-
)
|
| 49 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 50 |
|
| 51 |
if __name__ == "__main__":
|
| 52 |
demo.launch()
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
+
import torch
|
| 3 |
+
from transformers import AutoModelForSeq2SeqLM
|
| 4 |
from huggingface_hub import InferenceClient
|
| 5 |
|
| 6 |
+
# Define tokenizer
|
| 7 |
+
special_tokens = ["<pad>", "<s>", "</s>", "<unk>"]
|
| 8 |
+
nepali_chars = list("अआइईउऊऋॠऌॡऎएऐओऔकखगघङचछजझञटठडढणतथदधनपफबभमयरलवशषसह्ािीुूृॄेैोौंंःँ।०१२३४५६७८९,.;?!़ॅंःॊॅऒऽॉड़ॐ॥ऑऱफ़ढ़")
|
| 9 |
+
char_vocab = special_tokens + nepali_chars
|
| 10 |
+
|
| 11 |
+
char2id = {char: idx for idx, char in enumerate(char_vocab)}
|
| 12 |
+
id2char = {idx: char for char, idx in char2id.items()}
|
| 13 |
+
|
| 14 |
+
class CharTokenizer:
|
| 15 |
+
def __init__(self, char2id, id2char):
|
| 16 |
+
self.char2id = char2id
|
| 17 |
+
self.id2char = id2char
|
| 18 |
+
|
| 19 |
+
def encode(self, text):
|
| 20 |
+
return [self.char2id.get(char, self.char2id["<unk>"]) for char in text]
|
| 21 |
+
|
| 22 |
+
def decode(self, tokens):
|
| 23 |
+
return "".join([self.id2char.get(token, "<unk>") for token in tokens])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 24 |
|
| 25 |
+
def decodex(self, tokens):
|
| 26 |
+
decoded_string = ""
|
| 27 |
+
for i, token in enumerate(tokens):
|
| 28 |
+
char = self.id2char.get(token, "<unk>")
|
| 29 |
+
if char == "<unk>":
|
| 30 |
+
if i == 0 or i == len(tokens) - 1 or self.id2char.get(tokens[i - 1], "<unk>") == "<unk>":
|
| 31 |
+
decoded_string += ""
|
| 32 |
+
else:
|
| 33 |
+
decoded_string += " "
|
| 34 |
+
elif char == "<pad>":
|
| 35 |
+
pass
|
| 36 |
+
else:
|
| 37 |
+
decoded_string += char
|
| 38 |
+
return decoded_string
|
| 39 |
+
|
| 40 |
+
# Initialize tokenizer
|
| 41 |
+
tokenizer = CharTokenizer(char2id, id2char)
|
| 42 |
+
|
| 43 |
+
# Load T5 model
|
| 44 |
+
model_name = "bashyaldhiraj2067/t5_char_nepali"
|
| 45 |
+
model = AutoModelForSeq2SeqLM.from_pretrained(model_name)
|
| 46 |
+
|
| 47 |
+
def correct_text(input_text, max_length=256):
|
| 48 |
+
input_ids = tokenizer.encode(input_text)
|
| 49 |
+
input_tensor = torch.tensor([input_ids])
|
| 50 |
+
|
| 51 |
+
with torch.no_grad():
|
| 52 |
+
outputs = model.generate(
|
| 53 |
+
input_tensor,
|
| 54 |
+
max_length=max_length,
|
| 55 |
+
return_dict_in_generate=True
|
| 56 |
+
)
|
| 57 |
+
|
| 58 |
+
generated_tokens = outputs.sequences[0].tolist()
|
| 59 |
+
return tokenizer.decodex(generated_tokens)
|
| 60 |
+
|
| 61 |
+
# Gradio interface
|
| 62 |
+
demo = gr.Interface(
|
| 63 |
+
fn=correct_text,
|
| 64 |
+
inputs=[gr.Textbox(label="Enter Nepali Text"), gr.Slider(50, 256, step=10, label="Max Length")],
|
| 65 |
+
outputs=gr.Textbox(label="Corrected Text"),
|
| 66 |
+
title="Nepali Text Correction",
|
| 67 |
+
description="Enter text with errors and get corrected output using a T5 model trained on Nepali text.",
|
| 68 |
+
)
|
| 69 |
|
| 70 |
if __name__ == "__main__":
|
| 71 |
demo.launch()
|