Spaces:
Runtime error
Runtime error
Commit
·
959adf1
1
Parent(s):
d0f39be
update
Browse files
app.py
CHANGED
|
@@ -7,6 +7,7 @@ import torch
|
|
| 7 |
import os
|
| 8 |
import fire
|
| 9 |
|
|
|
|
| 10 |
from ldm.util import add_margin
|
| 11 |
|
| 12 |
_TITLE = '''SyncDreamer: Generating Multiview-consistent Images from a Single-view Image'''
|
|
@@ -41,10 +42,40 @@ def resize_inputs(image_input, crop_size):
|
|
| 41 |
results = add_margin(ref_img_, size=256)
|
| 42 |
return results
|
| 43 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 44 |
|
| 45 |
def run_demo():
|
| 46 |
-
device = f"cuda:0" if torch.cuda.is_available() else "cpu"
|
| 47 |
-
models = None # init_model(device, os.path.join(code_dir, ckpt))
|
|
|
|
| 48 |
|
| 49 |
# init sam model
|
| 50 |
mask_predictor = None # sam_init(device_idx)
|
|
@@ -86,9 +117,15 @@ def run_demo():
|
|
| 86 |
|
| 87 |
with gr.Column(scale=1):
|
| 88 |
input_block = gr.Image(type='pil', image_mode='RGB', label="Input to SyncDreamer", height=256, interactive=False)
|
| 89 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 90 |
run_btn = gr.Button('Run Generation', variant='primary', interactive=False)
|
| 91 |
|
|
|
|
|
|
|
| 92 |
update_guide = lambda GUIDE_TEXT: gr.update(value=GUIDE_TEXT)
|
| 93 |
image_block.change(fn=partial(mask_prediction, mask_predictor), inputs=[image_block], outputs=[sam_block], queue=False)\
|
| 94 |
.success(fn=partial(update_guide, _USER_GUIDE1), outputs=[guide_text], queue=False)
|
|
@@ -96,7 +133,8 @@ def run_demo():
|
|
| 96 |
crop_size_slider.change(fn=resize_inputs, inputs=[sam_block, crop_size_slider], outputs=[input_block], queue=False)\
|
| 97 |
.success(fn=partial(update_guide, _USER_GUIDE2), outputs=[guide_text], queue=False)
|
| 98 |
|
| 99 |
-
run_btn.click
|
|
|
|
| 100 |
|
| 101 |
demo.queue().launch(share=False, max_threads=80) # auth=("admin", os.environ['PASSWD'])
|
| 102 |
|
|
|
|
| 7 |
import os
|
| 8 |
import fire
|
| 9 |
|
| 10 |
+
from generate import load_model
|
| 11 |
from ldm.util import add_margin
|
| 12 |
|
| 13 |
_TITLE = '''SyncDreamer: Generating Multiview-consistent Images from a Single-view Image'''
|
|
|
|
| 42 |
results = add_margin(ref_img_, size=256)
|
| 43 |
return results
|
| 44 |
|
| 45 |
+
def generate(model, seed, batch_view_num, sample_num, cfg_scale, image_input, elevation_input):
|
| 46 |
+
torch.random.manual_seed(seed)
|
| 47 |
+
np.random.seed(seed)
|
| 48 |
+
|
| 49 |
+
# prepare data
|
| 50 |
+
image_input = np.asarray(image_input)
|
| 51 |
+
image_input = image_input.astype(np.float32) / 255.0
|
| 52 |
+
ref_mask = image_input[:, :, 3:]
|
| 53 |
+
image_input[:, :, :3] = image_input[:, :, :3] * ref_mask + 1 - ref_mask # white background
|
| 54 |
+
image_input = image_input[:, :, :3] * 2.0 - 1.0
|
| 55 |
+
image_input = torch.from_numpy(image_input.astype(np.float32))
|
| 56 |
+
elevation_input = torch.from_numpy(np.asarray([np.deg2rad(elevation_input)], np.float32))
|
| 57 |
+
data = {"input_image": image_input, "input_elevation": elevation_input}
|
| 58 |
+
for k, v in data.items():
|
| 59 |
+
data[k] = v.unsqueeze(0).cuda()
|
| 60 |
+
data[k] = torch.repeat_interleave(data[k], sample_num, dim=0)
|
| 61 |
+
|
| 62 |
+
x_sample = model.sample(data, cfg_scale, batch_view_num)
|
| 63 |
+
|
| 64 |
+
B, N, _, H, W = x_sample.shape
|
| 65 |
+
x_sample = (torch.clamp(x_sample,max=1.0,min=-1.0) + 1) * 0.5
|
| 66 |
+
x_sample = x_sample.permute(0,1,3,4,2).cpu().numpy() * 255
|
| 67 |
+
x_sample = x_sample.astype(np.uint8)
|
| 68 |
+
|
| 69 |
+
results = []
|
| 70 |
+
for bi in range(B):
|
| 71 |
+
results.append(torch.concat([x_sample[bi,ni] for ni in range(N)], 1))
|
| 72 |
+
results = torch.concat(results, 0)
|
| 73 |
+
return Image.fromarray(results)
|
| 74 |
|
| 75 |
def run_demo():
|
| 76 |
+
# device = f"cuda:0" if torch.cuda.is_available() else "cpu"
|
| 77 |
+
# models = None # init_model(device, os.path.join(code_dir, ckpt))
|
| 78 |
+
model = load_model('configs/syncdreamer', 'ckpt/syncdreamer-pretrain.ckpt', strict=True)
|
| 79 |
|
| 80 |
# init sam model
|
| 81 |
mask_predictor = None # sam_init(device_idx)
|
|
|
|
| 117 |
|
| 118 |
with gr.Column(scale=1):
|
| 119 |
input_block = gr.Image(type='pil', image_mode='RGB', label="Input to SyncDreamer", height=256, interactive=False)
|
| 120 |
+
elevation = gr.Slider(-10, 40, 30, step=5, label='Elevation angle', interactive=True)
|
| 121 |
+
cfg_scale = gr.Slider(1.0, 5.0, 2.0, step=0.1, label='Classifier free guidance', interactive=True)
|
| 122 |
+
# sample_num = gr.Slider(1, 2, 2, step=1, label='Sample Num', interactive=True, info='How many instance (16 images per instance)')
|
| 123 |
+
# batch_view_num = gr.Slider(1, 16, 8, step=1, label='', interactive=True)
|
| 124 |
+
seed = gr.Number(6033, label='Random seed', interactive=True)
|
| 125 |
run_btn = gr.Button('Run Generation', variant='primary', interactive=False)
|
| 126 |
|
| 127 |
+
output_block = gr.Image(type='pil', image_mode='RGB', label="Outputs of SyncDreamer", height=256, interactive=False)
|
| 128 |
+
|
| 129 |
update_guide = lambda GUIDE_TEXT: gr.update(value=GUIDE_TEXT)
|
| 130 |
image_block.change(fn=partial(mask_prediction, mask_predictor), inputs=[image_block], outputs=[sam_block], queue=False)\
|
| 131 |
.success(fn=partial(update_guide, _USER_GUIDE1), outputs=[guide_text], queue=False)
|
|
|
|
| 133 |
crop_size_slider.change(fn=resize_inputs, inputs=[sam_block, crop_size_slider], outputs=[input_block], queue=False)\
|
| 134 |
.success(fn=partial(update_guide, _USER_GUIDE2), outputs=[guide_text], queue=False)
|
| 135 |
|
| 136 |
+
run_btn.click(partial(generate, model, seed, 16, 1, cfg_scale, input_block, elevation), outputs=[output_block])\
|
| 137 |
+
.success(fn=partial(update_guide, _USER_GUIDE0), outputs=[guide_text], queue=False)
|
| 138 |
|
| 139 |
demo.queue().launch(share=False, max_threads=80) # auth=("admin", os.environ['PASSWD'])
|
| 140 |
|