Upload 2 files
Browse files- app.py +260 -0
- results.json +186 -0
app.py
ADDED
|
@@ -0,0 +1,260 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import json
|
| 3 |
+
import pandas as pd
|
| 4 |
+
from typing import Dict, List, Any
|
| 5 |
+
|
| 6 |
+
|
| 7 |
+
# Sample data
|
| 8 |
+
BENCHMARK_DATA_FORMAT_EXAMPLE = [
|
| 9 |
+
{
|
| 10 |
+
"name": "jinaai/jina-embeddings-v3",
|
| 11 |
+
"url": "https://huggingface.co/jinaai/jina-embeddings-v3",
|
| 12 |
+
"context_length": "8192",
|
| 13 |
+
"num_parameters": "572M",
|
| 14 |
+
"emb_dim": 1024,
|
| 15 |
+
"retrieval": {
|
| 16 |
+
"KazQADRetrieval": 0.63206,
|
| 17 |
+
"average_score": 0.63206
|
| 18 |
+
},
|
| 19 |
+
"classification": {
|
| 20 |
+
"KazSandraPolarityClassification": 0.75332,
|
| 21 |
+
"KazSandraScoreClassification": 0.519385,
|
| 22 |
+
"average_score": 0.6363525
|
| 23 |
+
},
|
| 24 |
+
"bitext_mining": {
|
| 25 |
+
"KazParcBitextMining_kaz-to-eng": 0.919131,
|
| 26 |
+
"KazParcBitextMining_eng-to-kaz": 0.912916,
|
| 27 |
+
"KazParcBitextMining_kaz-to-rus": 0.929359,
|
| 28 |
+
"KazParcBitextMining_rus-to-kaz": 0.921656,
|
| 29 |
+
"average_score": 0.9207655
|
| 30 |
+
}
|
| 31 |
+
}
|
| 32 |
+
]
|
| 33 |
+
|
| 34 |
+
|
| 35 |
+
class KazTEBLeaderboard:
|
| 36 |
+
def __init__(self, data: List[Dict[str, Any]]):
|
| 37 |
+
self.data = data
|
| 38 |
+
self.tasks = self._extract_tasks()
|
| 39 |
+
|
| 40 |
+
def _extract_tasks(self) -> Dict[str, List[str]]:
|
| 41 |
+
tasks = {}
|
| 42 |
+
if self.data:
|
| 43 |
+
sample_model = self.data[0]
|
| 44 |
+
for task_name in ['retrieval', 'classification', 'bitext_mining']:
|
| 45 |
+
if task_name in sample_model:
|
| 46 |
+
datasets = [k for k in sample_model[task_name].keys() if k != 'average_score']
|
| 47 |
+
tasks[task_name] = datasets
|
| 48 |
+
return tasks
|
| 49 |
+
|
| 50 |
+
def _format_score(self, score: float) -> str:
|
| 51 |
+
return f"{score:.4f}"
|
| 52 |
+
|
| 53 |
+
def _create_model_link(self, name: str, url: str) -> str:
|
| 54 |
+
return f'<a href="{url}" target="_blank" style="color: #1976d2; text-decoration: none;">{name}</a>'
|
| 55 |
+
|
| 56 |
+
def get_task_dataframe(self, task_name: str) -> pd.DataFrame:
|
| 57 |
+
rows = []
|
| 58 |
+
|
| 59 |
+
for model in self.data:
|
| 60 |
+
if task_name not in model:
|
| 61 |
+
continue
|
| 62 |
+
|
| 63 |
+
row = {
|
| 64 |
+
'Model': self._create_model_link(model['name'], model['url']),
|
| 65 |
+
'Average': self._format_score(model[task_name]['average_score']),
|
| 66 |
+
'Context Length': model['context_length'],
|
| 67 |
+
'Parameters': model.get('num_parameters', 'N/A'),
|
| 68 |
+
'Embedding Dimmension': model.get('emb_dim', 'N/A')
|
| 69 |
+
}
|
| 70 |
+
|
| 71 |
+
# Addition of dataset-specific scores
|
| 72 |
+
for dataset in self.tasks[task_name]:
|
| 73 |
+
if dataset in model[task_name]:
|
| 74 |
+
row[dataset] = self._format_score(model[task_name][dataset])
|
| 75 |
+
|
| 76 |
+
rows.append(row)
|
| 77 |
+
|
| 78 |
+
df = pd.DataFrame(rows)
|
| 79 |
+
df['_sort_key'] = df['Average'].astype(float)
|
| 80 |
+
df = df.sort_values('_sort_key', ascending=False).drop('_sort_key', axis=1)
|
| 81 |
+
df.insert(0, 'Rank', range(1, len(df) + 1))
|
| 82 |
+
|
| 83 |
+
return df
|
| 84 |
+
|
| 85 |
+
def create_interface(self):
|
| 86 |
+
|
| 87 |
+
# we will force the light theme for now :)
|
| 88 |
+
js_func = """
|
| 89 |
+
function refresh() {
|
| 90 |
+
const url = new URL(window.location);
|
| 91 |
+
|
| 92 |
+
if (url.searchParams.get('__theme') !== 'light') {
|
| 93 |
+
url.searchParams.set('__theme', 'light');
|
| 94 |
+
window.location.href = url.href;
|
| 95 |
+
}
|
| 96 |
+
}
|
| 97 |
+
"""
|
| 98 |
+
|
| 99 |
+
with gr.Blocks(js=js_func) as demo:
|
| 100 |
+
# Header
|
| 101 |
+
gr.Markdown(
|
| 102 |
+
"""
|
| 103 |
+
<div style="text-align: center; margin-bottom: 20px;">
|
| 104 |
+
<h1 style="font-size: 36px; margin-bottom: 10px;">KazTEB Leaderboard 🏆</h1>
|
| 105 |
+
<p style="font-size: 22px; color: #666;">Kazakh language extension for the <a href="https://github.com/embeddings-benchmark/mteb" target="_blank" style="color: #1976d2; text-decoration: none;">Massive Text Embedding Benchmark</a></p>
|
| 106 |
+
</div>
|
| 107 |
+
"""
|
| 108 |
+
)
|
| 109 |
+
|
| 110 |
+
# Subheader -- Project description
|
| 111 |
+
gr.Markdown(
|
| 112 |
+
"""
|
| 113 |
+
<div style="margin-bottom: 30px; padding: 20px; background-color: #f8f9fa; border-radius: 8px; border-left: 4px solid #1976d2;">
|
| 114 |
+
<p style="font-size: 16px; line-height: 1.6; margin: 0; color: #333;">
|
| 115 |
+
This is a new and ongoing project dedicated to a comprehensive evaluation of existing text embedding models on datasets designed for Kazakh language tasks. <a href="https://github.com/Batyr1203/kazteb">Link</a> to the project code. <br><br>Currently, the leaderboard supports only 3 tasks: <b>retrieval</b>, <b>classification</b>, and <b>bitext mining</b>, based on existing human-annotated datasets. The aim of this project is to extend the list to 8 tasks proposed in MTEB and cover multiple domains within each task. The test datasets are planned to be acquired from real data sources, without using synthetic samples.
|
| 116 |
+
</p>
|
| 117 |
+
</div>
|
| 118 |
+
"""
|
| 119 |
+
)
|
| 120 |
+
|
| 121 |
+
with gr.Tabs() as main_tabs:
|
| 122 |
+
with gr.Tab("📊 Task Results"):
|
| 123 |
+
|
| 124 |
+
with gr.Tabs() as task_tabs:
|
| 125 |
+
with gr.Tab("Retrieval"):
|
| 126 |
+
retrieval_df = self.get_task_dataframe('retrieval')
|
| 127 |
+
gr.DataFrame(
|
| 128 |
+
value=retrieval_df,
|
| 129 |
+
headers=list(retrieval_df.columns),
|
| 130 |
+
datatype=["number", "html", "str", "str", "str"] + ["str"] * (len(retrieval_df.columns) - 5),
|
| 131 |
+
col_count=(len(retrieval_df.columns), "fixed"),
|
| 132 |
+
interactive=False
|
| 133 |
+
)
|
| 134 |
+
|
| 135 |
+
with gr.Tab("Classification"):
|
| 136 |
+
classification_df = self.get_task_dataframe('classification')
|
| 137 |
+
gr.DataFrame(
|
| 138 |
+
value=classification_df,
|
| 139 |
+
headers=list(classification_df.columns),
|
| 140 |
+
datatype=["number", "html", "str", "str", "str"] + ["str"] * (len(classification_df.columns) - 5),
|
| 141 |
+
col_count=(len(classification_df.columns), "fixed"),
|
| 142 |
+
interactive=False
|
| 143 |
+
)
|
| 144 |
+
|
| 145 |
+
with gr.Tab("Bitext Mining"):
|
| 146 |
+
bitext_df = self.get_task_dataframe('bitext_mining')
|
| 147 |
+
gr.DataFrame(
|
| 148 |
+
value=bitext_df,
|
| 149 |
+
headers=list(bitext_df.columns),
|
| 150 |
+
datatype=["number", "html", "str", "str", "str"] + ["str"] * (len(bitext_df.columns) - 5),
|
| 151 |
+
col_count=(len(bitext_df.columns), "fixed"),
|
| 152 |
+
interactive=False
|
| 153 |
+
)
|
| 154 |
+
|
| 155 |
+
with gr.Tab("📈 Metrics"):
|
| 156 |
+
gr.Markdown("## Evaluation Metrics Overview")
|
| 157 |
+
gr.Markdown("Although the evaluation generates multiple metric values for each task, we retain only a single metric for reference.")
|
| 158 |
+
|
| 159 |
+
with gr.Row():
|
| 160 |
+
|
| 161 |
+
with gr.Column():
|
| 162 |
+
gr.Markdown(
|
| 163 |
+
"""### 🔍 Retrieval
|
| 164 |
+
|
| 165 |
+
**Metric:** nDCG@10 (Normalized Discounted Cumulative Gain)
|
| 166 |
+
- Measures ranking quality of retrieved documents
|
| 167 |
+
- Considers both relevance and position
|
| 168 |
+
- **Range:** 0.0 - 1.0 (higher is better)
|
| 169 |
+
|
| 170 |
+
**Dataset:** [KazQADRetrieval](https://huggingface.co/datasets/issai/kazqad)
|
| 171 |
+
- Question-answer retrieval for Kazakh language
|
| 172 |
+
- Human-annotated question-document pairs""",
|
| 173 |
+
elem_classes=["retrieval-card"]
|
| 174 |
+
)
|
| 175 |
+
|
| 176 |
+
with gr.Column():
|
| 177 |
+
gr.Markdown(
|
| 178 |
+
"""### 📝 Classification
|
| 179 |
+
|
| 180 |
+
**Metric:** Accuracy
|
| 181 |
+
- Percentage of correctly classified instances
|
| 182 |
+
- Standard classification metric
|
| 183 |
+
- **Range:** 0.0 - 1.0 (higher is better)
|
| 184 |
+
|
| 185 |
+
**Datasets:**
|
| 186 |
+
- **[KazSandraPolarityClassification](https://huggingface.co/datasets/issai/kazsandra):** Sentiment polarity
|
| 187 |
+
- **[KazSandraScoreClassification](https://huggingface.co/datasets/issai/kazsandra):** Sentiment scoring""",
|
| 188 |
+
elem_classes=["classification-card"]
|
| 189 |
+
)
|
| 190 |
+
|
| 191 |
+
with gr.Column():
|
| 192 |
+
gr.Markdown(
|
| 193 |
+
"""### 🔗 Bitext Mining
|
| 194 |
+
|
| 195 |
+
**Metric:** F1-Score
|
| 196 |
+
- Harmonic mean of precision and recall
|
| 197 |
+
- Balances correctness and completeness
|
| 198 |
+
- **Range:** 0.0 - 1.0 (higher is better)
|
| 199 |
+
|
| 200 |
+
**Dataset:** [KazParcBitextMining](https://huggingface.co/datasets/issai/kazparc)
|
| 201 |
+
- Parallel sentence mining (Kazakh ↔ English)
|
| 202 |
+
- Bidirectional evaluation""",
|
| 203 |
+
elem_classes=["bitext-card"]
|
| 204 |
+
)
|
| 205 |
+
|
| 206 |
+
gr.Markdown("---")
|
| 207 |
+
gr.Markdown("### 📊 Scoring & Ranking")
|
| 208 |
+
|
| 209 |
+
with gr.Row():
|
| 210 |
+
with gr.Column():
|
| 211 |
+
gr.Markdown("**Task Averaging:** Equal weight per dataset within each task")
|
| 212 |
+
with gr.Column():
|
| 213 |
+
gr.Markdown("**Model Ranking:** Based on individual task performance")
|
| 214 |
+
with gr.Column():
|
| 215 |
+
#gr.Markdown("**Future Plans:** Overall cross-task scoring implementation")
|
| 216 |
+
pass
|
| 217 |
+
|
| 218 |
+
# Todo section at the bottom
|
| 219 |
+
gr.Markdown("---")
|
| 220 |
+
gr.Markdown(
|
| 221 |
+
"""
|
| 222 |
+
<div style="margin-top: 30px; padding: 20px; background-color: #f0f8ff; border-radius: 8px; border-left: 4px solid #4a90e2;">
|
| 223 |
+
<h3 style="margin-top: 0; color: #2c3e50; display: flex; align-items: center;">
|
| 224 |
+
📋 TODO:
|
| 225 |
+
</h3>
|
| 226 |
+
<ul style="color: #333; line-height: 1.6; margin-bottom: 0;">
|
| 227 |
+
<li><strong>API-based Model Evaluation:</strong> Adding results of closed-source models such as Google's Gemini embeddings.</li>
|
| 228 |
+
<li><strong>Dynamic Data Loading:</strong> Switching to API-based result fetching for real-time updates without manual JSON uploads.</li>
|
| 229 |
+
</ul>
|
| 230 |
+
</div>
|
| 231 |
+
"""
|
| 232 |
+
)
|
| 233 |
+
|
| 234 |
+
# Contact information
|
| 235 |
+
gr.Markdown(
|
| 236 |
+
"""
|
| 237 |
+
<div style="text-align: center; margin-top: 20px; padding: 15px; color: #666; font-size: 14px;">
|
| 238 |
+
📧 Contact: <a href="mailto:arysbatyr@gmail.com" style="color: #1976d2; text-decoration: none;">arysbatyr@gmail.com</a>
|
| 239 |
+
</div>
|
| 240 |
+
"""
|
| 241 |
+
)
|
| 242 |
+
|
| 243 |
+
return demo
|
| 244 |
+
|
| 245 |
+
|
| 246 |
+
def load_benchmark_data(filepath: str = None) -> List[Dict[str, Any]]:
|
| 247 |
+
if filepath:
|
| 248 |
+
with open(filepath, 'r') as f:
|
| 249 |
+
return json.load(f)
|
| 250 |
+
return BENCHMARK_DATA_FORMAT_EXAMPLE
|
| 251 |
+
|
| 252 |
+
|
| 253 |
+
if __name__ == "__main__":
|
| 254 |
+
data = load_benchmark_data("./results.json")
|
| 255 |
+
|
| 256 |
+
leaderboard = KazTEBLeaderboard(data)
|
| 257 |
+
|
| 258 |
+
demo = leaderboard.create_interface()
|
| 259 |
+
demo.launch()
|
| 260 |
+
|
results.json
ADDED
|
@@ -0,0 +1,186 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
[
|
| 2 |
+
{
|
| 3 |
+
"name": "jinaai/jina-embeddings-v3",
|
| 4 |
+
"url": "https://huggingface.co/jinaai/jina-embeddings-v3",
|
| 5 |
+
"context_length": "8192",
|
| 6 |
+
"num_parameters": "572M",
|
| 7 |
+
"emb_dim": 1024,
|
| 8 |
+
"retrieval": {
|
| 9 |
+
"KazQADRetrieval": 0.63206,
|
| 10 |
+
"average_score": 0.63206
|
| 11 |
+
},
|
| 12 |
+
"classification": {
|
| 13 |
+
"KazSandraPolarityClassification": 0.75332,
|
| 14 |
+
"KazSandraScoreClassification": 0.519385,
|
| 15 |
+
"average_score": 0.6363525
|
| 16 |
+
},
|
| 17 |
+
"bitext_mining": {
|
| 18 |
+
"KazParcBitextMining_kaz-to-eng": 0.919131,
|
| 19 |
+
"KazParcBitextMining_eng-to-kaz": 0.912916,
|
| 20 |
+
"KazParcBitextMining_kaz-to-rus": 0.929359,
|
| 21 |
+
"KazParcBitextMining_rus-to-kaz": 0.921656,
|
| 22 |
+
"average_score": 0.9207655
|
| 23 |
+
}
|
| 24 |
+
},
|
| 25 |
+
{
|
| 26 |
+
"name": "Qwen/Qwen3-Embedding-0.6B",
|
| 27 |
+
"url": "https://huggingface.co/Qwen/Qwen3-Embedding-0.6B",
|
| 28 |
+
"context_length": "32K",
|
| 29 |
+
"num_parameters": "595M",
|
| 30 |
+
"emb_dim": 1024,
|
| 31 |
+
"retrieval": {
|
| 32 |
+
"KazQADRetrieval": 0.50446,
|
| 33 |
+
"average_score": 0.50446
|
| 34 |
+
},
|
| 35 |
+
"classification": {
|
| 36 |
+
"KazSandraScoreClassification": 0.370898,
|
| 37 |
+
"KazSandraPolarityClassification": 0.66377,
|
| 38 |
+
"average_score": 0.517334
|
| 39 |
+
},
|
| 40 |
+
"bitext_mining": {
|
| 41 |
+
"KazParcBitextMining_kaz-to-eng": 0.731777,
|
| 42 |
+
"KazParcBitextMining_eng-to-kaz": 0.742017,
|
| 43 |
+
"KazParcBitextMining_kaz-to-rus": 0.760971,
|
| 44 |
+
"KazParcBitextMining_rus-to-kaz": 0.766429,
|
| 45 |
+
"average_score": 0.7502985
|
| 46 |
+
}
|
| 47 |
+
},
|
| 48 |
+
{
|
| 49 |
+
"name": "Qwen/Qwen3-Embedding-4B",
|
| 50 |
+
"url": "https://huggingface.co/Qwen/Qwen3-Embedding-4B",
|
| 51 |
+
"context_length": "32K",
|
| 52 |
+
"num_parameters": "4B",
|
| 53 |
+
"emb_dim": 2560,
|
| 54 |
+
"retrieval": {
|
| 55 |
+
"KazQADRetrieval": 0.6153,
|
| 56 |
+
"average_score": 0.6153
|
| 57 |
+
},
|
| 58 |
+
"classification": {
|
| 59 |
+
"KazSandraScoreClassification": 0.394189,
|
| 60 |
+
"KazSandraPolarityClassification": 0.687012,
|
| 61 |
+
"average_score": 0.5406005
|
| 62 |
+
},
|
| 63 |
+
"bitext_mining": {
|
| 64 |
+
"KazParcBitextMining_kaz-to-eng": 0.943184,
|
| 65 |
+
"KazParcBitextMining_eng-to-kaz": 0.939993,
|
| 66 |
+
"KazParcBitextMining_kaz-to-rus": 0.945092,
|
| 67 |
+
"KazParcBitextMining_rus-to-kaz": 0.947474,
|
| 68 |
+
"average_score": 0.9439357500000001
|
| 69 |
+
}
|
| 70 |
+
},
|
| 71 |
+
{
|
| 72 |
+
"name": "Qwen/Qwen3-Embedding-8B",
|
| 73 |
+
"url": "https://huggingface.co/Qwen/Qwen3-Embedding-8B",
|
| 74 |
+
"context_length": "32K",
|
| 75 |
+
"num_parameters": "7B",
|
| 76 |
+
"emb_dim": 4096,
|
| 77 |
+
"retrieval": {
|
| 78 |
+
"KazQADRetrieval": 0.64347,
|
| 79 |
+
"average_score": 0.64347
|
| 80 |
+
},
|
| 81 |
+
"classification": {
|
| 82 |
+
"KazSandraScoreClassification": 0.471484,
|
| 83 |
+
"KazSandraPolarityClassification": 0.735547,
|
| 84 |
+
"average_score": 0.6035155
|
| 85 |
+
},
|
| 86 |
+
"bitext_mining": {
|
| 87 |
+
"KazParcBitextMining_kaz-to-eng": 0.958446,
|
| 88 |
+
"KazParcBitextMining_eng-to-kaz": 0.956327,
|
| 89 |
+
"KazParcBitextMining_kaz-to-rus": 0.957558,
|
| 90 |
+
"KazParcBitextMining_rus-to-kaz": 0.960846,
|
| 91 |
+
"average_score": 0.95829425
|
| 92 |
+
}
|
| 93 |
+
},
|
| 94 |
+
{
|
| 95 |
+
"name": "intfloat/multilingual-e5-small",
|
| 96 |
+
"url": "https://huggingface.co/intfloat/multilingual-e5-small",
|
| 97 |
+
"context_length": "512",
|
| 98 |
+
"num_parameters": "118M",
|
| 99 |
+
"emb_dim": 384,
|
| 100 |
+
"retrieval": {
|
| 101 |
+
"KazQADRetrieval": 0.53556,
|
| 102 |
+
"average_score": 0.53556
|
| 103 |
+
},
|
| 104 |
+
"classification": {
|
| 105 |
+
"KazSandraScoreClassification": 0.479639,
|
| 106 |
+
"KazSandraPolarityClassification": 0.74165,
|
| 107 |
+
"average_score": 0.6106445
|
| 108 |
+
},
|
| 109 |
+
"bitext_mining": {
|
| 110 |
+
"KazParcBitextMining_kaz-to-eng": 0.868082,
|
| 111 |
+
"KazParcBitextMining_eng-to-kaz": 0.873415,
|
| 112 |
+
"KazParcBitextMining_kaz-to-rus": 0.88751,
|
| 113 |
+
"KazParcBitextMining_rus-to-kaz": 0.904797,
|
| 114 |
+
"average_score": 0.883451
|
| 115 |
+
}
|
| 116 |
+
},
|
| 117 |
+
{
|
| 118 |
+
"name": "intfloat/multilingual-e5-large-instruct",
|
| 119 |
+
"url": "https://huggingface.co/intfloat/multilingual-e5-large-instruct",
|
| 120 |
+
"context_length": "512",
|
| 121 |
+
"num_parameters": "560M",
|
| 122 |
+
"emb_dim": 1024,
|
| 123 |
+
"retrieval": {
|
| 124 |
+
"KazQADRetrieval": 0.64164,
|
| 125 |
+
"average_score": 0.64164
|
| 126 |
+
},
|
| 127 |
+
"classification": {
|
| 128 |
+
"KazSandraPolarityClassification": 0.778467,
|
| 129 |
+
"KazSandraScoreClassification": 0.562012,
|
| 130 |
+
"average_score": 0.6702395
|
| 131 |
+
},
|
| 132 |
+
"bitext_mining": {
|
| 133 |
+
"KazParcBitextMining_kaz-to-eng": 0.961832,
|
| 134 |
+
"KazParcBitextMining_eng-to-kaz": 0.958423,
|
| 135 |
+
"KazParcBitextMining_kaz-to-rus": 0.958846,
|
| 136 |
+
"KazParcBitextMining_rus-to-kaz": 0.953091,
|
| 137 |
+
"average_score": 0.958048
|
| 138 |
+
}
|
| 139 |
+
},
|
| 140 |
+
{
|
| 141 |
+
"name": "intfloat/multilingual-e5-large",
|
| 142 |
+
"url": "https://huggingface.co/intfloat/multilingual-e5-large",
|
| 143 |
+
"context_length": "512",
|
| 144 |
+
"num_parameters": "560M",
|
| 145 |
+
"emb_dim": 1024,
|
| 146 |
+
"retrieval": {
|
| 147 |
+
"KazQADRetrieval": 0.61387,
|
| 148 |
+
"average_score": 0.61387
|
| 149 |
+
},
|
| 150 |
+
"classification": {
|
| 151 |
+
"KazSandraScoreClassification": 0.506543,
|
| 152 |
+
"KazSandraPolarityClassification": 0.75332,
|
| 153 |
+
"average_score": 0.6299315
|
| 154 |
+
},
|
| 155 |
+
"bitext_mining": {
|
| 156 |
+
"KazParcBitextMining_kaz-to-eng": 0.938867,
|
| 157 |
+
"KazParcBitextMining_eng-to-kaz": 0.941032,
|
| 158 |
+
"KazParcBitextMining_kaz-to-rus": 0.942812,
|
| 159 |
+
"KazParcBitextMining_rus-to-kaz": 0.945944,
|
| 160 |
+
"average_score": 0.94216375
|
| 161 |
+
}
|
| 162 |
+
},
|
| 163 |
+
{
|
| 164 |
+
"name": "intfloat/multilingual-e5-base",
|
| 165 |
+
"url": "https://huggingface.co/intfloat/multilingual-e5-base",
|
| 166 |
+
"context_length": "512",
|
| 167 |
+
"num_parameters": "278M",
|
| 168 |
+
"emb_dim": 768,
|
| 169 |
+
"retrieval": {
|
| 170 |
+
"KazQADRetrieval": 0.56312,
|
| 171 |
+
"average_score": 0.56312
|
| 172 |
+
},
|
| 173 |
+
"classification": {
|
| 174 |
+
"KazSandraPolarityClassification": 0.747656,
|
| 175 |
+
"KazSandraScoreClassification": 0.482275,
|
| 176 |
+
"average_score": 0.6149655
|
| 177 |
+
},
|
| 178 |
+
"bitext_mining": {
|
| 179 |
+
"KazParcBitextMining_kaz-to-eng": 0.902851,
|
| 180 |
+
"KazParcBitextMining_eng-to-kaz": 0.910523,
|
| 181 |
+
"KazParcBitextMining_kaz-to-rus": 0.918989,
|
| 182 |
+
"KazParcBitextMining_rus-to-kaz": 0.924031,
|
| 183 |
+
"average_score": 0.9140984999999999
|
| 184 |
+
}
|
| 185 |
+
}
|
| 186 |
+
]
|