Spaces:
Runtime error
Runtime error
More refactoring
Browse files
app.py
CHANGED
|
@@ -1,11 +1,9 @@
|
|
| 1 |
-
from pathlib import Path
|
| 2 |
-
|
| 3 |
import gradio as gr
|
| 4 |
import torch
|
| 5 |
from finetuning import FineTunedModel
|
| 6 |
from StableDiffuser import StableDiffuser
|
| 7 |
from tqdm import tqdm
|
| 8 |
-
|
| 9 |
|
| 10 |
model_map = {
|
| 11 |
'Car' : 'models/car.pt',
|
|
@@ -18,41 +16,16 @@ class Demo:
|
|
| 18 |
def __init__(self) -> None:
|
| 19 |
|
| 20 |
self.training = False
|
| 21 |
-
self.generating = False
|
| 22 |
-
self.nsteps = 50
|
| 23 |
|
| 24 |
-
self.diffuser = StableDiffuser(scheduler='DDIM', seed=42).to('cuda')
|
| 25 |
-
self.finetuner = None
|
| 26 |
-
|
| 27 |
|
| 28 |
with gr.Blocks() as demo:
|
| 29 |
self.layout()
|
| 30 |
-
self.switch_model(self.model_dropdown.value)
|
| 31 |
-
|
| 32 |
-
self.finetuner = self.finetuner.eval().half()
|
| 33 |
-
self.diffuser = self.diffuser.eval().half()
|
| 34 |
-
|
| 35 |
demo.queue(concurrency_count=2).launch()
|
| 36 |
|
| 37 |
-
def disable(self):
|
| 38 |
-
return [gr.update(interactive=False), gr.update(interactive=False)]
|
| 39 |
-
|
| 40 |
-
def switch_model(self, model_name):
|
| 41 |
-
|
| 42 |
-
if not model_name:
|
| 43 |
-
return
|
| 44 |
-
|
| 45 |
-
model_path = model_map[model_name]
|
| 46 |
-
|
| 47 |
-
checkpoint = torch.load(model_path)
|
| 48 |
-
|
| 49 |
-
self.finetuner = FineTunedModel.from_checkpoint(self.diffuser, checkpoint)
|
| 50 |
-
|
| 51 |
-
torch.cuda.empty_cache()
|
| 52 |
|
| 53 |
def layout(self):
|
| 54 |
|
| 55 |
-
|
| 56 |
with gr.Row():
|
| 57 |
|
| 58 |
|
|
@@ -149,25 +122,24 @@ class Demo:
|
|
| 149 |
|
| 150 |
with gr.Column(scale=1):
|
| 151 |
|
|
|
|
|
|
|
| 152 |
self.train_button = gr.Button(
|
| 153 |
value="Train",
|
| 154 |
)
|
| 155 |
|
| 156 |
self.download = gr.Files()
|
| 157 |
|
| 158 |
-
self.model_dropdown.change(self.switch_model, inputs=[self.model_dropdown])
|
| 159 |
self.infr_button.click(self.inference, inputs = [
|
| 160 |
self.prompt_input_infr,
|
| 161 |
-
self.seed_infr
|
|
|
|
| 162 |
],
|
| 163 |
outputs=[
|
| 164 |
self.image_new,
|
| 165 |
self.image_orig
|
| 166 |
]
|
| 167 |
)
|
| 168 |
-
self.train_button.click(self.disable,
|
| 169 |
-
outputs=[self.train_button, self.infr_button]
|
| 170 |
-
)
|
| 171 |
self.train_button.click(self.train, inputs = [
|
| 172 |
self.prompt_input,
|
| 173 |
self.train_method_input,
|
|
@@ -175,21 +147,13 @@ class Demo:
|
|
| 175 |
self.iterations_input,
|
| 176 |
self.lr_input
|
| 177 |
],
|
| 178 |
-
outputs=[self.train_button,
|
| 179 |
)
|
| 180 |
|
| 181 |
def train(self, prompt, train_method, neg_guidance, iterations, lr, pbar = gr.Progress(track_tqdm=True)):
|
| 182 |
|
| 183 |
if self.training:
|
| 184 |
-
return [
|
| 185 |
-
else:
|
| 186 |
-
self.training = True
|
| 187 |
-
|
| 188 |
-
del self.finetuner
|
| 189 |
-
|
| 190 |
-
torch.cuda.empty_cache()
|
| 191 |
-
|
| 192 |
-
self.diffuser = self.diffuser.train().float()
|
| 193 |
|
| 194 |
if train_method == 'ESD-x':
|
| 195 |
|
|
@@ -206,82 +170,35 @@ class Demo:
|
|
| 206 |
modules = ".*attn1$"
|
| 207 |
frozen = []
|
| 208 |
|
| 209 |
-
|
| 210 |
-
|
| 211 |
-
optimizer = torch.optim.Adam(finetuner.parameters(), lr=lr)
|
| 212 |
-
criteria = torch.nn.MSELoss()
|
| 213 |
-
|
| 214 |
-
pbar = tqdm(range(iterations))
|
| 215 |
|
| 216 |
-
|
| 217 |
|
| 218 |
-
|
| 219 |
-
positive_text_embeddings = self.diffuser.get_text_embeddings([prompt],n_imgs=1)
|
| 220 |
|
| 221 |
-
|
| 222 |
-
|
| 223 |
-
with torch.no_grad():
|
| 224 |
-
|
| 225 |
-
self.diffuser.set_scheduler_timesteps(self.nsteps)
|
| 226 |
-
|
| 227 |
-
optimizer.zero_grad()
|
| 228 |
-
|
| 229 |
-
iteration = torch.randint(1, self.nsteps - 1, (1,)).item()
|
| 230 |
-
|
| 231 |
-
latents = self.diffuser.get_initial_latents(1, 512, 1)
|
| 232 |
-
|
| 233 |
-
with finetuner:
|
| 234 |
|
| 235 |
-
|
| 236 |
-
latents,
|
| 237 |
-
positive_text_embeddings,
|
| 238 |
-
start_iteration=0,
|
| 239 |
-
end_iteration=iteration,
|
| 240 |
-
guidance_scale=3,
|
| 241 |
-
show_progress=False
|
| 242 |
-
)
|
| 243 |
|
| 244 |
-
|
| 245 |
|
| 246 |
-
|
| 247 |
-
|
| 248 |
-
positive_latents = self.diffuser.predict_noise(iteration, latents_steps[0], positive_text_embeddings, guidance_scale=1)
|
| 249 |
-
neutral_latents = self.diffuser.predict_noise(iteration, latents_steps[0], neutral_text_embeddings, guidance_scale=1)
|
| 250 |
|
| 251 |
-
|
| 252 |
-
negative_latents = self.diffuser.predict_noise(iteration, latents_steps[0], positive_text_embeddings, guidance_scale=1)
|
| 253 |
|
| 254 |
-
positive_latents.requires_grad = False
|
| 255 |
-
neutral_latents.requires_grad = False
|
| 256 |
|
| 257 |
-
|
| 258 |
-
loss.backward()
|
| 259 |
-
optimizer.step()
|
| 260 |
|
| 261 |
-
|
| 262 |
-
torch.save(finetuner.state_dict(), ft_path)
|
| 263 |
|
| 264 |
-
|
|
|
|
|
|
|
| 265 |
|
| 266 |
-
self.
|
| 267 |
|
| 268 |
torch.cuda.empty_cache()
|
| 269 |
|
| 270 |
-
self.training = False
|
| 271 |
-
|
| 272 |
-
model_map['Custom'] = ft_path
|
| 273 |
-
|
| 274 |
-
return [gr.update(interactive=True), gr.update(interactive=True), ft_path, gr.Dropdown.update(choices=list(model_map.keys()), value='Custom')]
|
| 275 |
-
|
| 276 |
-
|
| 277 |
-
def inference(self, prompt, seed, pbar = gr.Progress(track_tqdm=True)):
|
| 278 |
-
if self.generating:
|
| 279 |
-
return [None, None]
|
| 280 |
-
else:
|
| 281 |
-
self.generating = True
|
| 282 |
-
|
| 283 |
-
self.diffuser._seed = seed or 42
|
| 284 |
-
|
| 285 |
images = self.diffuser(
|
| 286 |
prompt,
|
| 287 |
n_steps=50,
|
|
@@ -302,8 +219,6 @@ class Demo:
|
|
| 302 |
|
| 303 |
edited_image = images[0][0]
|
| 304 |
|
| 305 |
-
self.generating = False
|
| 306 |
-
|
| 307 |
torch.cuda.empty_cache()
|
| 308 |
|
| 309 |
return edited_image, orig_image
|
|
|
|
|
|
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
import torch
|
| 3 |
from finetuning import FineTunedModel
|
| 4 |
from StableDiffuser import StableDiffuser
|
| 5 |
from tqdm import tqdm
|
| 6 |
+
from train import train
|
| 7 |
|
| 8 |
model_map = {
|
| 9 |
'Car' : 'models/car.pt',
|
|
|
|
| 16 |
def __init__(self) -> None:
|
| 17 |
|
| 18 |
self.training = False
|
|
|
|
|
|
|
| 19 |
|
| 20 |
+
self.diffuser = StableDiffuser(scheduler='DDIM', seed=42).to('cuda').eval().half()
|
|
|
|
|
|
|
| 21 |
|
| 22 |
with gr.Blocks() as demo:
|
| 23 |
self.layout()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 24 |
demo.queue(concurrency_count=2).launch()
|
| 25 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 26 |
|
| 27 |
def layout(self):
|
| 28 |
|
|
|
|
| 29 |
with gr.Row():
|
| 30 |
|
| 31 |
|
|
|
|
| 122 |
|
| 123 |
with gr.Column(scale=1):
|
| 124 |
|
| 125 |
+
self.train_status = gr.Button(value='', variant='primary', label='Status', interactive=False)
|
| 126 |
+
|
| 127 |
self.train_button = gr.Button(
|
| 128 |
value="Train",
|
| 129 |
)
|
| 130 |
|
| 131 |
self.download = gr.Files()
|
| 132 |
|
|
|
|
| 133 |
self.infr_button.click(self.inference, inputs = [
|
| 134 |
self.prompt_input_infr,
|
| 135 |
+
self.seed_infr,
|
| 136 |
+
self.model_dropdown
|
| 137 |
],
|
| 138 |
outputs=[
|
| 139 |
self.image_new,
|
| 140 |
self.image_orig
|
| 141 |
]
|
| 142 |
)
|
|
|
|
|
|
|
|
|
|
| 143 |
self.train_button.click(self.train, inputs = [
|
| 144 |
self.prompt_input,
|
| 145 |
self.train_method_input,
|
|
|
|
| 147 |
self.iterations_input,
|
| 148 |
self.lr_input
|
| 149 |
],
|
| 150 |
+
outputs=[self.train_button, self.train_status, self.download, self.model_dropdown]
|
| 151 |
)
|
| 152 |
|
| 153 |
def train(self, prompt, train_method, neg_guidance, iterations, lr, pbar = gr.Progress(track_tqdm=True)):
|
| 154 |
|
| 155 |
if self.training:
|
| 156 |
+
return [gr.update(interactive=True, value='Train'), gr.update(value='Someone else is training... Try again soon'), None, gr.update()]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 157 |
|
| 158 |
if train_method == 'ESD-x':
|
| 159 |
|
|
|
|
| 170 |
modules = ".*attn1$"
|
| 171 |
frozen = []
|
| 172 |
|
| 173 |
+
randn = torch.randint(1, 10000000, (1,)).item()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 174 |
|
| 175 |
+
save_path = f"models/{randn}_{prompt.lower().replace(' ', '')}.pt"
|
| 176 |
|
| 177 |
+
self.training = True
|
|
|
|
| 178 |
|
| 179 |
+
train(prompt, modules, frozen, iterations, neg_guidance, lr, save_path)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 180 |
|
| 181 |
+
self.training = False
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 182 |
|
| 183 |
+
torch.cuda.empty_cache()
|
| 184 |
|
| 185 |
+
model_map['Custom'] = save_path
|
|
|
|
|
|
|
|
|
|
| 186 |
|
| 187 |
+
return [gr.update(interactive=True, value='Train'), gr.update(value='Done Training'), save_path, gr.Dropdown.update(choices=list(model_map.keys()), value='Custom')]
|
|
|
|
| 188 |
|
|
|
|
|
|
|
| 189 |
|
| 190 |
+
def inference(self, prompt, seed, model_name, pbar = gr.Progress(track_tqdm=True)):
|
|
|
|
|
|
|
| 191 |
|
| 192 |
+
self.diffuser._seed = seed or 42
|
|
|
|
| 193 |
|
| 194 |
+
model_path = model_map[model_name]
|
| 195 |
+
|
| 196 |
+
checkpoint = torch.load(model_path)
|
| 197 |
|
| 198 |
+
self.finetuner = FineTunedModel.from_checkpoint(self.diffuser, checkpoint).eval().half()
|
| 199 |
|
| 200 |
torch.cuda.empty_cache()
|
| 201 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 202 |
images = self.diffuser(
|
| 203 |
prompt,
|
| 204 |
n_steps=50,
|
|
|
|
| 219 |
|
| 220 |
edited_image = images[0][0]
|
| 221 |
|
|
|
|
|
|
|
| 222 |
torch.cuda.empty_cache()
|
| 223 |
|
| 224 |
return edited_image, orig_image
|
train.py
ADDED
|
@@ -0,0 +1,84 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from StableDiffuser import StableDiffuser
|
| 2 |
+
from finetuning import FineTunedModel
|
| 3 |
+
import torch
|
| 4 |
+
from tqdm import tqdm
|
| 5 |
+
|
| 6 |
+
def train(prompt, modules, freeze_modules, iterations, negative_guidance, lr, save_path):
|
| 7 |
+
|
| 8 |
+
nsteps = 50
|
| 9 |
+
|
| 10 |
+
diffuser = StableDiffuser(scheduler='DDIM').to('cuda')
|
| 11 |
+
diffuser.train()
|
| 12 |
+
|
| 13 |
+
finetuner = FineTunedModel(diffuser, modules, frozen_modules=freeze_modules)
|
| 14 |
+
|
| 15 |
+
optimizer = torch.optim.Adam(finetuner.parameters(), lr=lr)
|
| 16 |
+
criteria = torch.nn.MSELoss()
|
| 17 |
+
|
| 18 |
+
pbar = tqdm(range(iterations))
|
| 19 |
+
|
| 20 |
+
with torch.no_grad():
|
| 21 |
+
|
| 22 |
+
neutral_text_embeddings = diffuser.get_text_embeddings([''],n_imgs=1)
|
| 23 |
+
positive_text_embeddings = diffuser.get_text_embeddings([prompt],n_imgs=1)
|
| 24 |
+
|
| 25 |
+
losses = []
|
| 26 |
+
|
| 27 |
+
for i in pbar:
|
| 28 |
+
|
| 29 |
+
with torch.no_grad():
|
| 30 |
+
|
| 31 |
+
diffuser.set_scheduler_timesteps(nsteps)
|
| 32 |
+
|
| 33 |
+
optimizer.zero_grad()
|
| 34 |
+
|
| 35 |
+
iteration = torch.randint(1, nsteps - 1, (1,)).item()
|
| 36 |
+
|
| 37 |
+
latents = diffuser.get_initial_latents(1, 512, 1)
|
| 38 |
+
|
| 39 |
+
with finetuner:
|
| 40 |
+
|
| 41 |
+
latents_steps, _ = diffuser.diffusion(
|
| 42 |
+
latents,
|
| 43 |
+
positive_text_embeddings,
|
| 44 |
+
start_iteration=0,
|
| 45 |
+
end_iteration=iteration,
|
| 46 |
+
guidance_scale=3,
|
| 47 |
+
show_progress=False
|
| 48 |
+
)
|
| 49 |
+
|
| 50 |
+
diffuser.set_scheduler_timesteps(1000)
|
| 51 |
+
|
| 52 |
+
iteration = int(iteration / nsteps * 1000)
|
| 53 |
+
|
| 54 |
+
positive_latents = diffuser.predict_noise(iteration, latents_steps[0], positive_text_embeddings, guidance_scale=1)
|
| 55 |
+
neutral_latents = diffuser.predict_noise(iteration, latents_steps[0], neutral_text_embeddings, guidance_scale=1)
|
| 56 |
+
|
| 57 |
+
with finetuner:
|
| 58 |
+
negative_latents = diffuser.predict_noise(iteration, latents_steps[0], positive_text_embeddings, guidance_scale=1)
|
| 59 |
+
|
| 60 |
+
positive_latents.requires_grad = False
|
| 61 |
+
neutral_latents.requires_grad = False
|
| 62 |
+
|
| 63 |
+
loss = criteria(negative_latents, neutral_latents - (negative_guidance*(positive_latents - neutral_latents))) #loss = criteria(e_n, e_0) works the best try 5000 epochs
|
| 64 |
+
loss.backward()
|
| 65 |
+
losses.append(loss.item())
|
| 66 |
+
optimizer.step()
|
| 67 |
+
|
| 68 |
+
torch.save(finetuner.state_dict(), save_path)
|
| 69 |
+
|
| 70 |
+
if __name__ == '__main__':
|
| 71 |
+
|
| 72 |
+
import argparse
|
| 73 |
+
|
| 74 |
+
parser = argparse.ArgumentParser()
|
| 75 |
+
|
| 76 |
+
parser.add_argument('--prompt', required=True)
|
| 77 |
+
parser.add_argument('--modules', required=True)
|
| 78 |
+
parser.add_argument('--freeze_modules', nargs='+', required=True)
|
| 79 |
+
parser.add_argument('--save_path', required=True)
|
| 80 |
+
parser.add_argument('--iterations', type=int, required=True)
|
| 81 |
+
parser.add_argument('--lr', type=float, required=True)
|
| 82 |
+
parser.add_argument('--negative_guidance', type=float, required=True)
|
| 83 |
+
|
| 84 |
+
train(**vars(parser.parse_args()))
|