Spaces:
Runtime error
Runtime error
Gpu mem stuff
Browse files
app.py
CHANGED
|
@@ -6,6 +6,7 @@ from convertModels import convert_ldm_unet_checkpoint, create_unet_diffusers_con
|
|
| 6 |
from omegaconf import OmegaConf
|
| 7 |
from StableDiffuser import StableDiffuser
|
| 8 |
from diffusers import UNet2DConditionModel
|
|
|
|
| 9 |
|
| 10 |
ckpt_path = "stable_diffusion/models/ldm/sd-v1-4-full-ema.ckpt"
|
| 11 |
config_path = "stable_diffusion/configs/stable-diffusion/v1-inference.yaml"
|
|
@@ -18,10 +19,16 @@ class Demo:
|
|
| 18 |
|
| 19 |
self.training = False
|
| 20 |
self.generating = False
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 21 |
|
| 22 |
with gr.Blocks() as demo:
|
| 23 |
self.layout()
|
| 24 |
-
demo.queue(concurrency_count=
|
| 25 |
|
| 26 |
def disable(self):
|
| 27 |
return [gr.update(interactive=False), gr.update(interactive=False)]
|
|
@@ -131,6 +138,8 @@ class Demo:
|
|
| 131 |
else:
|
| 132 |
self.training = True
|
| 133 |
|
|
|
|
|
|
|
| 134 |
model_orig, model_edited = train_esd(prompt,
|
| 135 |
train_method,
|
| 136 |
3,
|
|
@@ -146,8 +155,16 @@ class Demo:
|
|
| 146 |
original_config = OmegaConf.load(config_path)
|
| 147 |
original_config["model"]["params"]["unet_config"]["params"]["in_channels"] = 4
|
| 148 |
unet_config = create_unet_diffusers_config(original_config, image_size=512)
|
| 149 |
-
|
| 150 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 151 |
|
| 152 |
self.init_inference(model_edited_sd, model_orig_sd, unet_config)
|
| 153 |
|
|
@@ -155,16 +172,17 @@ class Demo:
|
|
| 155 |
|
| 156 |
def init_inference(self, model_edited_sd, model_orig_sd, unet_config):
|
| 157 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 158 |
self.model_edited_sd = model_edited_sd
|
| 159 |
self.model_orig_sd = model_orig_sd
|
| 160 |
|
| 161 |
-
self.diffuser = StableDiffuser(42)
|
| 162 |
-
|
| 163 |
-
self.diffuser.unet = UNet2DConditionModel(**unet_config)
|
| 164 |
self.diffuser.to('cuda')
|
| 165 |
|
| 166 |
self.training = False
|
| 167 |
-
|
| 168 |
|
| 169 |
def inference(self, prompt, seed, pbar = gr.Progress(track_tqdm=True)):
|
| 170 |
|
|
@@ -185,6 +203,8 @@ class Demo:
|
|
| 185 |
|
| 186 |
orig_image = images[0][0]
|
| 187 |
|
|
|
|
|
|
|
| 188 |
self.diffuser.unet.load_state_dict(self.model_edited_sd)
|
| 189 |
|
| 190 |
images = self.diffuser(
|
|
@@ -197,6 +217,8 @@ class Demo:
|
|
| 197 |
|
| 198 |
self.generating = False
|
| 199 |
|
|
|
|
|
|
|
| 200 |
return edited_image, orig_image
|
| 201 |
|
| 202 |
|
|
|
|
| 6 |
from omegaconf import OmegaConf
|
| 7 |
from StableDiffuser import StableDiffuser
|
| 8 |
from diffusers import UNet2DConditionModel
|
| 9 |
+
import torch
|
| 10 |
|
| 11 |
ckpt_path = "stable_diffusion/models/ldm/sd-v1-4-full-ema.ckpt"
|
| 12 |
config_path = "stable_diffusion/configs/stable-diffusion/v1-inference.yaml"
|
|
|
|
| 19 |
|
| 20 |
self.training = False
|
| 21 |
self.generating = False
|
| 22 |
+
self.model_edited_sd = None
|
| 23 |
+
self.model_orig_sd = None
|
| 24 |
+
|
| 25 |
+
self.diffuser = StableDiffuser(42)
|
| 26 |
+
self.diffuser.to('cpu')
|
| 27 |
+
self.diffuser = self.diffuser.half()
|
| 28 |
|
| 29 |
with gr.Blocks() as demo:
|
| 30 |
self.layout()
|
| 31 |
+
demo.queue(concurrency_count=1).launch()
|
| 32 |
|
| 33 |
def disable(self):
|
| 34 |
return [gr.update(interactive=False), gr.update(interactive=False)]
|
|
|
|
| 138 |
else:
|
| 139 |
self.training = True
|
| 140 |
|
| 141 |
+
self.diffuser.to('cpu')
|
| 142 |
+
|
| 143 |
model_orig, model_edited = train_esd(prompt,
|
| 144 |
train_method,
|
| 145 |
3,
|
|
|
|
| 155 |
original_config = OmegaConf.load(config_path)
|
| 156 |
original_config["model"]["params"]["unet_config"]["params"]["in_channels"] = 4
|
| 157 |
unet_config = create_unet_diffusers_config(original_config, image_size=512)
|
| 158 |
+
_model_edited_sd = convert_ldm_unet_checkpoint(model_edited.state_dict(), unet_config)
|
| 159 |
+
_model_orig_sd = convert_ldm_unet_checkpoint(model_orig.state_dict(), unet_config)
|
| 160 |
+
|
| 161 |
+
model_edited_sd = {key: value.cpu() for key, value in _model_edited_sd.items()}
|
| 162 |
+
model_orig_sd = {key: value.cpu() for key, value in _model_orig_sd.items()}
|
| 163 |
+
|
| 164 |
+
del model_orig, _model_orig_sd
|
| 165 |
+
del model_edited, _model_edited_sd
|
| 166 |
+
|
| 167 |
+
torch.cuda.empty_cache()
|
| 168 |
|
| 169 |
self.init_inference(model_edited_sd, model_orig_sd, unet_config)
|
| 170 |
|
|
|
|
| 172 |
|
| 173 |
def init_inference(self, model_edited_sd, model_orig_sd, unet_config):
|
| 174 |
|
| 175 |
+
del self.model_edited_sd, self.model_orig_sd
|
| 176 |
+
|
| 177 |
+
torch.cuda.empty_cache()
|
| 178 |
+
|
| 179 |
self.model_edited_sd = model_edited_sd
|
| 180 |
self.model_orig_sd = model_orig_sd
|
| 181 |
|
|
|
|
|
|
|
|
|
|
| 182 |
self.diffuser.to('cuda')
|
| 183 |
|
| 184 |
self.training = False
|
| 185 |
+
|
| 186 |
|
| 187 |
def inference(self, prompt, seed, pbar = gr.Progress(track_tqdm=True)):
|
| 188 |
|
|
|
|
| 203 |
|
| 204 |
orig_image = images[0][0]
|
| 205 |
|
| 206 |
+
torch.cuda.empty_cache()
|
| 207 |
+
|
| 208 |
self.diffuser.unet.load_state_dict(self.model_edited_sd)
|
| 209 |
|
| 210 |
images = self.diffuser(
|
|
|
|
| 217 |
|
| 218 |
self.generating = False
|
| 219 |
|
| 220 |
+
torch.cuda.empty_cache()
|
| 221 |
+
|
| 222 |
return edited_image, orig_image
|
| 223 |
|
| 224 |
|