Spaces:
Sleeping
Sleeping
| # Copyright 2021 AlQuraishi Laboratory | |
| # Copyright 2021 DeepMind Technologies Limited | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| import itertools | |
| from functools import reduce, wraps | |
| from operator import add | |
| import numpy as np | |
| import torch | |
| from dockformerpp.config import NUM_RES | |
| from dockformerpp.utils import residue_constants as rc | |
| from dockformerpp.utils.residue_constants import restypes | |
| from dockformerpp.utils.rigid_utils import Rotation, Rigid | |
| from dockformerpp.utils.geometry.rigid_matrix_vector import Rigid3Array | |
| from dockformerpp.utils.geometry.rotation_matrix import Rot3Array | |
| from dockformerpp.utils.geometry.vector import Vec3Array | |
| from dockformerpp.utils.tensor_utils import ( | |
| tree_map, | |
| tensor_tree_map, | |
| batched_gather, | |
| ) | |
| def cast_to_64bit_ints(protein): | |
| # We keep all ints as int64 | |
| for k, v in protein.items(): | |
| if v.dtype == torch.int32: | |
| protein[k] = v.type(torch.int64) | |
| return protein | |
| def make_one_hot(x, num_classes): | |
| x_one_hot = torch.zeros(*x.shape, num_classes, device=x.device) | |
| x_one_hot.scatter_(-1, x.unsqueeze(-1), 1) | |
| return x_one_hot | |
| def curry1(f): | |
| """Supply all arguments but the first.""" | |
| def fc(*args, **kwargs): | |
| return lambda x: f(x, *args, **kwargs) | |
| return fc | |
| def squeeze_features(protein): | |
| """Remove singleton and repeated dimensions in protein features.""" | |
| protein["aatype"] = torch.argmax(protein["aatype"], dim=-1) | |
| for k in [ | |
| "domain_name", | |
| "seq_length", | |
| "sequence", | |
| "resolution", | |
| "residue_index", | |
| ]: | |
| if k in protein: | |
| final_dim = protein[k].shape[-1] | |
| if isinstance(final_dim, int) and final_dim == 1: | |
| if torch.is_tensor(protein[k]): | |
| protein[k] = torch.squeeze(protein[k], dim=-1) | |
| else: | |
| protein[k] = np.squeeze(protein[k], axis=-1) | |
| for k in ["seq_length"]: | |
| if k in protein: | |
| protein[k] = protein[k][0] | |
| return protein | |
| def pseudo_beta_fn(aatype, all_atom_positions, all_atom_mask): | |
| """Create pseudo beta features.""" | |
| is_gly = torch.eq(aatype, rc.restype_order["G"]) | |
| ca_idx = rc.atom_order["CA"] | |
| cb_idx = rc.atom_order["CB"] | |
| pseudo_beta = torch.where( | |
| torch.tile(is_gly[..., None], [1] * len(is_gly.shape) + [3]), | |
| all_atom_positions[..., ca_idx, :], | |
| all_atom_positions[..., cb_idx, :], | |
| ) | |
| if all_atom_mask is not None: | |
| pseudo_beta_mask = torch.where( | |
| is_gly, all_atom_mask[..., ca_idx], all_atom_mask[..., cb_idx] | |
| ) | |
| return pseudo_beta, pseudo_beta_mask | |
| else: | |
| return pseudo_beta | |
| def make_pseudo_beta(protein): | |
| """Create pseudo-beta (alpha for glycine) position and mask.""" | |
| (protein["pseudo_beta"], protein["pseudo_beta_mask"]) = pseudo_beta_fn( | |
| protein["aatype"], | |
| protein["all_atom_positions"], | |
| protein["all_atom_mask"], | |
| ) | |
| return protein | |
| def make_target_feat(protein): | |
| """Create and concatenate protein features.""" | |
| # Whether there is a domain break. Always zero for chains, but keeping for | |
| # compatibility with domain datasets. | |
| aatype_1hot = make_one_hot(protein["aatype"], 20) | |
| protein["protein_target_feat"] = aatype_1hot | |
| return protein | |
| def select_feat(protein, feature_list): | |
| return {k: v for k, v in protein.items() if k in feature_list} | |
| def get_restypes(device): | |
| restype_atom14_to_atom37 = [] | |
| restype_atom37_to_atom14 = [] | |
| restype_atom14_mask = [] | |
| for rt in rc.restypes: | |
| atom_names = rc.restype_name_to_atom14_names[rc.restype_1to3[rt]] | |
| restype_atom14_to_atom37.append( | |
| [(rc.atom_order[name] if name else 0) for name in atom_names] | |
| ) | |
| atom_name_to_idx14 = {name: i for i, name in enumerate(atom_names)} | |
| restype_atom37_to_atom14.append( | |
| [ | |
| (atom_name_to_idx14[name] if name in atom_name_to_idx14 else 0) | |
| for name in rc.atom_types | |
| ] | |
| ) | |
| restype_atom14_mask.append( | |
| [(1.0 if name else 0.0) for name in atom_names] | |
| ) | |
| # Add dummy mapping for restype 'UNK' | |
| restype_atom14_to_atom37.append([0] * 14) | |
| restype_atom37_to_atom14.append([0] * 37) | |
| restype_atom14_mask.append([0.0] * 14) | |
| restype_atom14_to_atom37 = torch.tensor( | |
| restype_atom14_to_atom37, | |
| dtype=torch.int32, | |
| device=device, | |
| ) | |
| restype_atom37_to_atom14 = torch.tensor( | |
| restype_atom37_to_atom14, | |
| dtype=torch.int32, | |
| device=device, | |
| ) | |
| restype_atom14_mask = torch.tensor( | |
| restype_atom14_mask, | |
| dtype=torch.float32, | |
| device=device, | |
| ) | |
| return restype_atom14_to_atom37, restype_atom37_to_atom14, restype_atom14_mask | |
| def get_restype_atom37_mask(device): | |
| # create the corresponding mask | |
| restype_atom37_mask = torch.zeros( | |
| [len(restypes) + 1, 37], dtype=torch.float32, device=device | |
| ) | |
| for restype, restype_letter in enumerate(rc.restypes): | |
| restype_name = rc.restype_1to3[restype_letter] | |
| atom_names = rc.residue_atoms[restype_name] | |
| for atom_name in atom_names: | |
| atom_type = rc.atom_order[atom_name] | |
| restype_atom37_mask[restype, atom_type] = 1 | |
| return restype_atom37_mask | |
| def make_atom14_masks(protein): | |
| """Construct denser atom positions (14 dimensions instead of 37).""" | |
| restype_atom14_to_atom37, restype_atom37_to_atom14, restype_atom14_mask = get_restypes(protein["aatype"].device) | |
| protein_aatype = protein['aatype'].to(torch.long) | |
| # create the mapping for (residx, atom14) --> atom37, i.e. an array | |
| # with shape (num_res, 14) containing the atom37 indices for this protein | |
| residx_atom14_to_atom37 = restype_atom14_to_atom37[protein_aatype] | |
| residx_atom14_mask = restype_atom14_mask[protein_aatype] | |
| protein["atom14_atom_exists"] = residx_atom14_mask | |
| protein["residx_atom14_to_atom37"] = residx_atom14_to_atom37.long() | |
| # create the gather indices for mapping back | |
| residx_atom37_to_atom14 = restype_atom37_to_atom14[protein_aatype] | |
| protein["residx_atom37_to_atom14"] = residx_atom37_to_atom14.long() | |
| restype_atom37_mask = get_restype_atom37_mask(protein["aatype"].device) | |
| residx_atom37_mask = restype_atom37_mask[protein_aatype] | |
| protein["atom37_atom_exists"] = residx_atom37_mask | |
| return protein | |
| def make_atom14_positions(protein): | |
| """Constructs denser atom positions (14 dimensions instead of 37).""" | |
| residx_atom14_mask = protein["atom14_atom_exists"] | |
| residx_atom14_to_atom37 = protein["residx_atom14_to_atom37"] | |
| # Create a mask for known ground truth positions. | |
| residx_atom14_gt_mask = residx_atom14_mask * batched_gather( | |
| protein["all_atom_mask"], | |
| residx_atom14_to_atom37, | |
| dim=-1, | |
| no_batch_dims=len(protein["all_atom_mask"].shape[:-1]), | |
| ) | |
| # Gather the ground truth positions. | |
| residx_atom14_gt_positions = residx_atom14_gt_mask[..., None] * ( | |
| batched_gather( | |
| protein["all_atom_positions"], | |
| residx_atom14_to_atom37, | |
| dim=-2, | |
| no_batch_dims=len(protein["all_atom_positions"].shape[:-2]), | |
| ) | |
| ) | |
| protein["atom14_atom_exists"] = residx_atom14_mask | |
| protein["atom14_gt_exists"] = residx_atom14_gt_mask | |
| protein["atom14_gt_positions"] = residx_atom14_gt_positions | |
| # As the atom naming is ambiguous for 7 of the 20 amino acids, provide | |
| # alternative ground truth coordinates where the naming is swapped | |
| restype_3 = [rc.restype_1to3[res] for res in rc.restypes] | |
| restype_3 += ["UNK"] | |
| # Matrices for renaming ambiguous atoms. | |
| all_matrices = { | |
| res: torch.eye( | |
| 14, | |
| dtype=protein["all_atom_mask"].dtype, | |
| device=protein["all_atom_mask"].device, | |
| ) | |
| for res in restype_3 | |
| } | |
| for resname, swap in rc.residue_atom_renaming_swaps.items(): | |
| correspondences = torch.arange( | |
| 14, device=protein["all_atom_mask"].device | |
| ) | |
| for source_atom_swap, target_atom_swap in swap.items(): | |
| source_index = rc.restype_name_to_atom14_names[resname].index( | |
| source_atom_swap | |
| ) | |
| target_index = rc.restype_name_to_atom14_names[resname].index( | |
| target_atom_swap | |
| ) | |
| correspondences[source_index] = target_index | |
| correspondences[target_index] = source_index | |
| renaming_matrix = protein["all_atom_mask"].new_zeros((14, 14)) | |
| for index, correspondence in enumerate(correspondences): | |
| renaming_matrix[index, correspondence] = 1.0 | |
| all_matrices[resname] = renaming_matrix | |
| renaming_matrices = torch.stack( | |
| [all_matrices[restype] for restype in restype_3] | |
| ) | |
| # Pick the transformation matrices for the given residue sequence | |
| # shape (num_res, 14, 14). | |
| renaming_transform = renaming_matrices[protein["aatype"]] | |
| # Apply it to the ground truth positions. shape (num_res, 14, 3). | |
| alternative_gt_positions = torch.einsum( | |
| "...rac,...rab->...rbc", residx_atom14_gt_positions, renaming_transform | |
| ) | |
| protein["atom14_alt_gt_positions"] = alternative_gt_positions | |
| # Create the mask for the alternative ground truth (differs from the | |
| # ground truth mask, if only one of the atoms in an ambiguous pair has a | |
| # ground truth position). | |
| alternative_gt_mask = torch.einsum( | |
| "...ra,...rab->...rb", residx_atom14_gt_mask, renaming_transform | |
| ) | |
| protein["atom14_alt_gt_exists"] = alternative_gt_mask | |
| # Create an ambiguous atoms mask. shape: (21, 14). | |
| restype_atom14_is_ambiguous = protein["all_atom_mask"].new_zeros((21, 14)) | |
| for resname, swap in rc.residue_atom_renaming_swaps.items(): | |
| for atom_name1, atom_name2 in swap.items(): | |
| restype = rc.restype_order[rc.restype_3to1[resname]] | |
| atom_idx1 = rc.restype_name_to_atom14_names[resname].index( | |
| atom_name1 | |
| ) | |
| atom_idx2 = rc.restype_name_to_atom14_names[resname].index( | |
| atom_name2 | |
| ) | |
| restype_atom14_is_ambiguous[restype, atom_idx1] = 1 | |
| restype_atom14_is_ambiguous[restype, atom_idx2] = 1 | |
| # From this create an ambiguous_mask for the given sequence. | |
| protein["atom14_atom_is_ambiguous"] = restype_atom14_is_ambiguous[ | |
| protein["aatype"] | |
| ] | |
| return protein | |
| def atom37_to_frames(protein, eps=1e-8): | |
| aatype = protein["aatype"] | |
| all_atom_positions = protein["all_atom_positions"] | |
| all_atom_mask = protein["all_atom_mask"] | |
| batch_dims = len(aatype.shape[:-1]) | |
| restype_rigidgroup_base_atom_names = np.full([21, 8, 3], "", dtype=object) | |
| restype_rigidgroup_base_atom_names[:, 0, :] = ["C", "CA", "N"] | |
| restype_rigidgroup_base_atom_names[:, 3, :] = ["CA", "C", "O"] | |
| for restype, restype_letter in enumerate(rc.restypes): | |
| resname = rc.restype_1to3[restype_letter] | |
| for chi_idx in range(4): | |
| if rc.chi_angles_mask[restype][chi_idx]: | |
| names = rc.chi_angles_atoms[resname][chi_idx] | |
| restype_rigidgroup_base_atom_names[ | |
| restype, chi_idx + 4, : | |
| ] = names[1:] | |
| restype_rigidgroup_mask = all_atom_mask.new_zeros( | |
| (*aatype.shape[:-1], 21, 8), | |
| ) | |
| restype_rigidgroup_mask[..., 0] = 1 | |
| restype_rigidgroup_mask[..., 3] = 1 | |
| restype_rigidgroup_mask[..., :len(restypes), 4:] = all_atom_mask.new_tensor( | |
| rc.chi_angles_mask | |
| ) | |
| lookuptable = rc.atom_order.copy() | |
| lookuptable[""] = 0 | |
| lookup = np.vectorize(lambda x: lookuptable[x]) | |
| restype_rigidgroup_base_atom37_idx = lookup( | |
| restype_rigidgroup_base_atom_names, | |
| ) | |
| restype_rigidgroup_base_atom37_idx = aatype.new_tensor( | |
| restype_rigidgroup_base_atom37_idx, | |
| ) | |
| restype_rigidgroup_base_atom37_idx = ( | |
| restype_rigidgroup_base_atom37_idx.view( | |
| *((1,) * batch_dims), *restype_rigidgroup_base_atom37_idx.shape | |
| ) | |
| ) | |
| residx_rigidgroup_base_atom37_idx = batched_gather( | |
| restype_rigidgroup_base_atom37_idx, | |
| aatype, | |
| dim=-3, | |
| no_batch_dims=batch_dims, | |
| ) | |
| base_atom_pos = batched_gather( | |
| all_atom_positions, | |
| residx_rigidgroup_base_atom37_idx, | |
| dim=-2, | |
| no_batch_dims=len(all_atom_positions.shape[:-2]), | |
| ) | |
| gt_frames = Rigid.from_3_points( | |
| p_neg_x_axis=base_atom_pos[..., 0, :], | |
| origin=base_atom_pos[..., 1, :], | |
| p_xy_plane=base_atom_pos[..., 2, :], | |
| eps=eps, | |
| ) | |
| group_exists = batched_gather( | |
| restype_rigidgroup_mask, | |
| aatype, | |
| dim=-2, | |
| no_batch_dims=batch_dims, | |
| ) | |
| gt_atoms_exist = batched_gather( | |
| all_atom_mask, | |
| residx_rigidgroup_base_atom37_idx, | |
| dim=-1, | |
| no_batch_dims=len(all_atom_mask.shape[:-1]), | |
| ) | |
| gt_exists = torch.min(gt_atoms_exist, dim=-1)[0] * group_exists | |
| rots = torch.eye(3, dtype=all_atom_mask.dtype, device=aatype.device) | |
| rots = torch.tile(rots, (*((1,) * batch_dims), 8, 1, 1)) | |
| rots[..., 0, 0, 0] = -1 | |
| rots[..., 0, 2, 2] = -1 | |
| rots = Rotation(rot_mats=rots) | |
| gt_frames = gt_frames.compose(Rigid(rots, None)) | |
| restype_rigidgroup_is_ambiguous = all_atom_mask.new_zeros( | |
| *((1,) * batch_dims), 21, 8 | |
| ) | |
| restype_rigidgroup_rots = torch.eye( | |
| 3, dtype=all_atom_mask.dtype, device=aatype.device | |
| ) | |
| restype_rigidgroup_rots = torch.tile( | |
| restype_rigidgroup_rots, | |
| (*((1,) * batch_dims), 21, 8, 1, 1), | |
| ) | |
| for resname, _ in rc.residue_atom_renaming_swaps.items(): | |
| restype = rc.restype_order[rc.restype_3to1[resname]] | |
| chi_idx = int(sum(rc.chi_angles_mask[restype]) - 1) | |
| restype_rigidgroup_is_ambiguous[..., restype, chi_idx + 4] = 1 | |
| restype_rigidgroup_rots[..., restype, chi_idx + 4, 1, 1] = -1 | |
| restype_rigidgroup_rots[..., restype, chi_idx + 4, 2, 2] = -1 | |
| residx_rigidgroup_is_ambiguous = batched_gather( | |
| restype_rigidgroup_is_ambiguous, | |
| aatype, | |
| dim=-2, | |
| no_batch_dims=batch_dims, | |
| ) | |
| residx_rigidgroup_ambiguity_rot = batched_gather( | |
| restype_rigidgroup_rots, | |
| aatype, | |
| dim=-4, | |
| no_batch_dims=batch_dims, | |
| ) | |
| residx_rigidgroup_ambiguity_rot = Rotation( | |
| rot_mats=residx_rigidgroup_ambiguity_rot | |
| ) | |
| alt_gt_frames = gt_frames.compose( | |
| Rigid(residx_rigidgroup_ambiguity_rot, None) | |
| ) | |
| gt_frames_tensor = gt_frames.to_tensor_4x4() | |
| alt_gt_frames_tensor = alt_gt_frames.to_tensor_4x4() | |
| protein["rigidgroups_gt_frames"] = gt_frames_tensor | |
| protein["rigidgroups_gt_exists"] = gt_exists | |
| protein["rigidgroups_group_exists"] = group_exists | |
| protein["rigidgroups_group_is_ambiguous"] = residx_rigidgroup_is_ambiguous | |
| protein["rigidgroups_alt_gt_frames"] = alt_gt_frames_tensor | |
| return protein | |
| def get_chi_atom_indices(): | |
| """Returns atom indices needed to compute chi angles for all residue types. | |
| Returns: | |
| A tensor of shape [residue_types=21, chis=4, atoms=4]. The residue types are | |
| in the order specified in rc.restypes + unknown residue type | |
| at the end. For chi angles which are not defined on the residue, the | |
| positions indices are by default set to 0. | |
| """ | |
| chi_atom_indices = [] | |
| for residue_name in rc.restypes: | |
| residue_name = rc.restype_1to3[residue_name] | |
| residue_chi_angles = rc.chi_angles_atoms[residue_name] | |
| atom_indices = [] | |
| for chi_angle in residue_chi_angles: | |
| atom_indices.append([rc.atom_order[atom] for atom in chi_angle]) | |
| for _ in range(4 - len(atom_indices)): | |
| atom_indices.append( | |
| [0, 0, 0, 0] | |
| ) # For chi angles not defined on the AA. | |
| chi_atom_indices.append(atom_indices) | |
| chi_atom_indices.append([[0, 0, 0, 0]] * 4) # For UNKNOWN residue. | |
| return chi_atom_indices | |
| def atom37_to_torsion_angles( | |
| protein, | |
| prefix="", | |
| ): | |
| """ | |
| Convert coordinates to torsion angles. | |
| This function is extremely sensitive to floating point imprecisions | |
| and should be run with double precision whenever possible. | |
| Args: | |
| Dict containing: | |
| * (prefix)aatype: | |
| [*, N_res] residue indices | |
| * (prefix)all_atom_positions: | |
| [*, N_res, 37, 3] atom positions (in atom37 | |
| format) | |
| * (prefix)all_atom_mask: | |
| [*, N_res, 37] atom position mask | |
| Returns: | |
| The same dictionary updated with the following features: | |
| "(prefix)torsion_angles_sin_cos" ([*, N_res, 7, 2]) | |
| Torsion angles | |
| "(prefix)alt_torsion_angles_sin_cos" ([*, N_res, 7, 2]) | |
| Alternate torsion angles (accounting for 180-degree symmetry) | |
| "(prefix)torsion_angles_mask" ([*, N_res, 7]) | |
| Torsion angles mask | |
| """ | |
| aatype = protein[prefix + "aatype"] | |
| all_atom_positions = protein[prefix + "all_atom_positions"] | |
| all_atom_mask = protein[prefix + "all_atom_mask"] | |
| aatype = torch.clamp(aatype, max=20) | |
| pad = all_atom_positions.new_zeros( | |
| [*all_atom_positions.shape[:-3], 1, 37, 3] | |
| ) | |
| prev_all_atom_positions = torch.cat( | |
| [pad, all_atom_positions[..., :-1, :, :]], dim=-3 | |
| ) | |
| pad = all_atom_mask.new_zeros([*all_atom_mask.shape[:-2], 1, 37]) | |
| prev_all_atom_mask = torch.cat([pad, all_atom_mask[..., :-1, :]], dim=-2) | |
| pre_omega_atom_pos = torch.cat( | |
| [prev_all_atom_positions[..., 1:3, :], all_atom_positions[..., :2, :]], | |
| dim=-2, | |
| ) | |
| phi_atom_pos = torch.cat( | |
| [prev_all_atom_positions[..., 2:3, :], all_atom_positions[..., :3, :]], | |
| dim=-2, | |
| ) | |
| psi_atom_pos = torch.cat( | |
| [all_atom_positions[..., :3, :], all_atom_positions[..., 4:5, :]], | |
| dim=-2, | |
| ) | |
| pre_omega_mask = torch.prod( | |
| prev_all_atom_mask[..., 1:3], dim=-1 | |
| ) * torch.prod(all_atom_mask[..., :2], dim=-1) | |
| phi_mask = prev_all_atom_mask[..., 2] * torch.prod( | |
| all_atom_mask[..., :3], dim=-1, dtype=all_atom_mask.dtype | |
| ) | |
| psi_mask = ( | |
| torch.prod(all_atom_mask[..., :3], dim=-1, dtype=all_atom_mask.dtype) | |
| * all_atom_mask[..., 4] | |
| ) | |
| chi_atom_indices = torch.as_tensor( | |
| get_chi_atom_indices(), device=aatype.device | |
| ) | |
| atom_indices = chi_atom_indices[..., aatype, :, :] | |
| chis_atom_pos = batched_gather( | |
| all_atom_positions, atom_indices, -2, len(atom_indices.shape[:-2]) | |
| ) | |
| chi_angles_mask = list(rc.chi_angles_mask) | |
| chi_angles_mask.append([0.0, 0.0, 0.0, 0.0]) | |
| chi_angles_mask = all_atom_mask.new_tensor(chi_angles_mask) | |
| chis_mask = chi_angles_mask[aatype, :] | |
| chi_angle_atoms_mask = batched_gather( | |
| all_atom_mask, | |
| atom_indices, | |
| dim=-1, | |
| no_batch_dims=len(atom_indices.shape[:-2]), | |
| ) | |
| chi_angle_atoms_mask = torch.prod( | |
| chi_angle_atoms_mask, dim=-1, dtype=chi_angle_atoms_mask.dtype | |
| ) | |
| chis_mask = chis_mask * chi_angle_atoms_mask | |
| torsions_atom_pos = torch.cat( | |
| [ | |
| pre_omega_atom_pos[..., None, :, :], | |
| phi_atom_pos[..., None, :, :], | |
| psi_atom_pos[..., None, :, :], | |
| chis_atom_pos, | |
| ], | |
| dim=-3, | |
| ) | |
| torsion_angles_mask = torch.cat( | |
| [ | |
| pre_omega_mask[..., None], | |
| phi_mask[..., None], | |
| psi_mask[..., None], | |
| chis_mask, | |
| ], | |
| dim=-1, | |
| ) | |
| torsion_frames = Rigid.from_3_points( | |
| torsions_atom_pos[..., 1, :], | |
| torsions_atom_pos[..., 2, :], | |
| torsions_atom_pos[..., 0, :], | |
| eps=1e-8, | |
| ) | |
| fourth_atom_rel_pos = torsion_frames.invert().apply( | |
| torsions_atom_pos[..., 3, :] | |
| ) | |
| torsion_angles_sin_cos = torch.stack( | |
| [fourth_atom_rel_pos[..., 2], fourth_atom_rel_pos[..., 1]], dim=-1 | |
| ) | |
| denom = torch.sqrt( | |
| torch.sum( | |
| torch.square(torsion_angles_sin_cos), | |
| dim=-1, | |
| dtype=torsion_angles_sin_cos.dtype, | |
| keepdims=True, | |
| ) | |
| + 1e-8 | |
| ) | |
| torsion_angles_sin_cos = torsion_angles_sin_cos / denom | |
| torsion_angles_sin_cos = torsion_angles_sin_cos * all_atom_mask.new_tensor( | |
| [1.0, 1.0, -1.0, 1.0, 1.0, 1.0, 1.0], | |
| )[((None,) * len(torsion_angles_sin_cos.shape[:-2])) + (slice(None), None)] | |
| chi_is_ambiguous = torsion_angles_sin_cos.new_tensor( | |
| rc.chi_pi_periodic, | |
| )[aatype, ...] | |
| mirror_torsion_angles = torch.cat( | |
| [ | |
| all_atom_mask.new_ones(*aatype.shape, 3), | |
| 1.0 - 2.0 * chi_is_ambiguous, | |
| ], | |
| dim=-1, | |
| ) | |
| alt_torsion_angles_sin_cos = ( | |
| torsion_angles_sin_cos * mirror_torsion_angles[..., None] | |
| ) | |
| protein[prefix + "torsion_angles_sin_cos"] = torsion_angles_sin_cos | |
| protein[prefix + "alt_torsion_angles_sin_cos"] = alt_torsion_angles_sin_cos | |
| protein[prefix + "torsion_angles_mask"] = torsion_angles_mask | |
| return protein | |
| def get_backbone_frames(protein): | |
| # DISCREPANCY: AlphaFold uses tensor_7s here. I don't know why. | |
| protein["backbone_rigid_tensor"] = protein["rigidgroups_gt_frames"][ | |
| ..., 0, :, : | |
| ] | |
| protein["backbone_rigid_mask"] = protein["rigidgroups_gt_exists"][..., 0] | |
| return protein | |
| def get_chi_angles(protein): | |
| dtype = protein["all_atom_mask"].dtype | |
| protein["chi_angles_sin_cos"] = ( | |
| protein["torsion_angles_sin_cos"][..., 3:, :] | |
| ).to(dtype) | |
| protein["chi_mask"] = protein["torsion_angles_mask"][..., 3:].to(dtype) | |
| return protein | |
| def random_crop_to_size( | |
| protein, | |
| crop_size, | |
| shape_schema, | |
| seed=None, | |
| ): | |
| """Crop randomly to `crop_size`, or keep as is if shorter than that.""" | |
| # We want each ensemble to be cropped the same way | |
| g = None | |
| if seed is not None: | |
| g = torch.Generator(device=protein["seq_length"].device) | |
| g.manual_seed(seed) | |
| seq_length = protein["seq_length"] | |
| num_res_crop_size = min(int(seq_length), crop_size) | |
| def _randint(lower, upper): | |
| return int(torch.randint( | |
| lower, | |
| upper + 1, | |
| (1,), | |
| device=protein["seq_length"].device, | |
| generator=g, | |
| )[0]) | |
| n = seq_length - num_res_crop_size | |
| if "use_clamped_fape" in protein and protein["use_clamped_fape"] == 1.: | |
| right_anchor = n | |
| else: | |
| x = _randint(0, n) | |
| right_anchor = n - x | |
| num_res_crop_start = _randint(0, right_anchor) | |
| for k, v in protein.items(): | |
| if k not in shape_schema or (NUM_RES not in shape_schema[k]): | |
| continue | |
| slices = [] | |
| for i, (dim_size, dim) in enumerate(zip(shape_schema[k], v.shape)): | |
| is_num_res = dim_size == NUM_RES | |
| crop_start = num_res_crop_start if is_num_res else 0 | |
| crop_size = num_res_crop_size if is_num_res else dim | |
| slices.append(slice(crop_start, crop_start + crop_size)) | |
| protein[k] = v[slices] | |
| protein["seq_length"] = protein["seq_length"].new_tensor(num_res_crop_size) | |
| return protein | |