积极的屁孩
commited on
Commit
·
3b944a1
1
Parent(s):
defde46
cn -> en
Browse files
app.py
CHANGED
|
@@ -13,67 +13,67 @@ import re
|
|
| 13 |
import spaces
|
| 14 |
|
| 15 |
def install_espeak():
|
| 16 |
-
"""
|
| 17 |
try:
|
| 18 |
-
#
|
| 19 |
result = subprocess.run(["which", "espeak-ng"], capture_output=True, text=True)
|
| 20 |
if result.returncode != 0:
|
| 21 |
-
print("
|
| 22 |
-
#
|
| 23 |
subprocess.run(["apt-get", "update"], check=True)
|
| 24 |
-
#
|
| 25 |
subprocess.run(["apt-get", "install", "-y", "espeak-ng", "espeak-ng-data"], check=True)
|
| 26 |
-
print("espeak-ng
|
| 27 |
else:
|
| 28 |
-
print("espeak-ng
|
| 29 |
-
#
|
| 30 |
-
# print("
|
| 31 |
# subprocess.run(["apt-get", "update"], check=True)
|
| 32 |
# subprocess.run(["apt-get", "install", "--only-upgrade", "-y", "espeak-ng-data"], check=True)
|
| 33 |
|
| 34 |
-
#
|
| 35 |
try:
|
| 36 |
voices_result = subprocess.run(["espeak-ng", "--voices=cmn"], capture_output=True, text=True, check=True)
|
| 37 |
if "cmn" in voices_result.stdout:
|
| 38 |
-
print("espeak-ng
|
| 39 |
else:
|
| 40 |
-
print("
|
| 41 |
except Exception as e:
|
| 42 |
-
print(f"
|
| 43 |
|
| 44 |
except Exception as e:
|
| 45 |
-
print(f"
|
| 46 |
-
print("
|
| 47 |
|
| 48 |
-
#
|
| 49 |
install_espeak()
|
| 50 |
|
| 51 |
def patch_langsegment_init():
|
| 52 |
try:
|
| 53 |
-
#
|
| 54 |
spec = importlib.util.find_spec("LangSegment")
|
| 55 |
if spec is None or spec.origin is None:
|
| 56 |
-
print("
|
| 57 |
return
|
| 58 |
|
| 59 |
-
#
|
| 60 |
init_path = os.path.join(os.path.dirname(spec.origin), '__init__.py')
|
| 61 |
|
| 62 |
if not os.path.exists(init_path):
|
| 63 |
-
print(f"
|
| 64 |
-
#
|
| 65 |
for site_pkg_path in site.getsitepackages():
|
| 66 |
potential_path = os.path.join(site_pkg_path, 'LangSegment', '__init__.py')
|
| 67 |
if os.path.exists(potential_path):
|
| 68 |
init_path = potential_path
|
| 69 |
-
print(f"
|
| 70 |
break
|
| 71 |
-
else: #
|
| 72 |
-
print(f"
|
| 73 |
return
|
| 74 |
|
| 75 |
|
| 76 |
-
print(f"
|
| 77 |
with open(init_path, 'r') as f:
|
| 78 |
lines = f.readlines()
|
| 79 |
|
|
@@ -85,52 +85,52 @@ def patch_langsegment_init():
|
|
| 85 |
stripped_line = line.strip()
|
| 86 |
if stripped_line.startswith(target_line_prefix):
|
| 87 |
if 'setLangfilters' in stripped_line or 'getLangfilters' in stripped_line:
|
| 88 |
-
print(f"
|
| 89 |
-
#
|
| 90 |
modified_line = stripped_line.replace(',setLangfilters', '')
|
| 91 |
modified_line = modified_line.replace(',getLangfilters', '')
|
| 92 |
-
#
|
| 93 |
modified_line = modified_line.replace('setLangfilters,', '')
|
| 94 |
modified_line = modified_line.replace('getLangfilters,', '')
|
| 95 |
-
#
|
| 96 |
modified_line = modified_line.rstrip(',')
|
| 97 |
new_lines.append(modified_line + '\n')
|
| 98 |
modified = True
|
| 99 |
-
print(f"
|
| 100 |
else:
|
| 101 |
-
new_lines.append(line) #
|
| 102 |
else:
|
| 103 |
-
new_lines.append(line) #
|
| 104 |
|
| 105 |
if modified:
|
| 106 |
-
print(f"
|
| 107 |
try:
|
| 108 |
with open(init_path, 'w') as f:
|
| 109 |
f.writelines(new_lines)
|
| 110 |
-
print("LangSegment __init__.py
|
| 111 |
-
#
|
| 112 |
try:
|
| 113 |
import LangSegment
|
| 114 |
importlib.reload(LangSegment)
|
| 115 |
-
print("LangSegment
|
| 116 |
except Exception as reload_e:
|
| 117 |
-
print(f"
|
| 118 |
except PermissionError:
|
| 119 |
-
print(f"
|
| 120 |
except Exception as write_e:
|
| 121 |
-
print(f"
|
| 122 |
else:
|
| 123 |
-
print("LangSegment __init__.py
|
| 124 |
|
| 125 |
except ImportError:
|
| 126 |
-
print("
|
| 127 |
except Exception as e:
|
| 128 |
-
print(f"
|
| 129 |
|
| 130 |
-
#
|
| 131 |
patch_langsegment_init()
|
| 132 |
|
| 133 |
-
#
|
| 134 |
if not os.path.exists("Amphion"):
|
| 135 |
subprocess.run(["git", "clone", "https://github.com/open-mmlab/Amphion.git"])
|
| 136 |
os.chdir("Amphion")
|
|
@@ -138,17 +138,17 @@ else:
|
|
| 138 |
if not os.getcwd().endswith("Amphion"):
|
| 139 |
os.chdir("Amphion")
|
| 140 |
|
| 141 |
-
#
|
| 142 |
if os.path.dirname(os.path.abspath("Amphion")) not in sys.path:
|
| 143 |
sys.path.append(os.path.dirname(os.path.abspath("Amphion")))
|
| 144 |
|
| 145 |
-
#
|
| 146 |
os.makedirs("wav", exist_ok=True)
|
| 147 |
os.makedirs("ckpts/Vevo", exist_ok=True)
|
| 148 |
|
| 149 |
from models.vc.vevo.vevo_utils import VevoInferencePipeline, save_audio, load_wav
|
| 150 |
|
| 151 |
-
#
|
| 152 |
def setup_configs():
|
| 153 |
config_path = "models/vc/vevo/config"
|
| 154 |
os.makedirs(config_path, exist_ok=True)
|
|
@@ -171,27 +171,27 @@ def setup_configs():
|
|
| 171 |
repo_type="model",
|
| 172 |
)
|
| 173 |
os.makedirs(os.path.dirname(file_path), exist_ok=True)
|
| 174 |
-
#
|
| 175 |
subprocess.run(["cp", file_data, file_path])
|
| 176 |
except Exception as e:
|
| 177 |
-
print(f"
|
| 178 |
|
| 179 |
setup_configs()
|
| 180 |
|
| 181 |
-
#
|
| 182 |
device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
|
| 183 |
-
print(f"
|
| 184 |
|
| 185 |
-
#
|
| 186 |
inference_pipelines = {}
|
| 187 |
|
| 188 |
def get_pipeline(pipeline_type):
|
| 189 |
if pipeline_type in inference_pipelines:
|
| 190 |
return inference_pipelines[pipeline_type]
|
| 191 |
|
| 192 |
-
#
|
| 193 |
if pipeline_type == "style" or pipeline_type == "voice":
|
| 194 |
-
#
|
| 195 |
local_dir = snapshot_download(
|
| 196 |
repo_id="amphion/Vevo",
|
| 197 |
repo_type="model",
|
|
@@ -202,7 +202,7 @@ def get_pipeline(pipeline_type):
|
|
| 202 |
local_dir, "tokenizer/vq32/hubert_large_l18_c32.pkl"
|
| 203 |
)
|
| 204 |
|
| 205 |
-
#
|
| 206 |
local_dir = snapshot_download(
|
| 207 |
repo_id="amphion/Vevo",
|
| 208 |
repo_type="model",
|
|
@@ -211,7 +211,7 @@ def get_pipeline(pipeline_type):
|
|
| 211 |
)
|
| 212 |
content_style_tokenizer_ckpt_path = os.path.join(local_dir, "tokenizer/vq8192")
|
| 213 |
|
| 214 |
-
#
|
| 215 |
local_dir = snapshot_download(
|
| 216 |
repo_id="amphion/Vevo",
|
| 217 |
repo_type="model",
|
|
@@ -221,7 +221,7 @@ def get_pipeline(pipeline_type):
|
|
| 221 |
ar_cfg_path = "./models/vc/vevo/config/Vq32ToVq8192.json"
|
| 222 |
ar_ckpt_path = os.path.join(local_dir, "contentstyle_modeling/Vq32ToVq8192")
|
| 223 |
|
| 224 |
-
#
|
| 225 |
local_dir = snapshot_download(
|
| 226 |
repo_id="amphion/Vevo",
|
| 227 |
repo_type="model",
|
|
@@ -231,7 +231,7 @@ def get_pipeline(pipeline_type):
|
|
| 231 |
fmt_cfg_path = "./models/vc/vevo/config/Vq8192ToMels.json"
|
| 232 |
fmt_ckpt_path = os.path.join(local_dir, "acoustic_modeling/Vq8192ToMels")
|
| 233 |
|
| 234 |
-
#
|
| 235 |
local_dir = snapshot_download(
|
| 236 |
repo_id="amphion/Vevo",
|
| 237 |
repo_type="model",
|
|
@@ -241,7 +241,7 @@ def get_pipeline(pipeline_type):
|
|
| 241 |
vocoder_cfg_path = "./models/vc/vevo/config/Vocoder.json"
|
| 242 |
vocoder_ckpt_path = os.path.join(local_dir, "acoustic_modeling/Vocoder")
|
| 243 |
|
| 244 |
-
#
|
| 245 |
inference_pipeline = VevoInferencePipeline(
|
| 246 |
content_tokenizer_ckpt_path=content_tokenizer_ckpt_path,
|
| 247 |
content_style_tokenizer_ckpt_path=content_style_tokenizer_ckpt_path,
|
|
@@ -255,7 +255,7 @@ def get_pipeline(pipeline_type):
|
|
| 255 |
)
|
| 256 |
|
| 257 |
elif pipeline_type == "timbre":
|
| 258 |
-
#
|
| 259 |
local_dir = snapshot_download(
|
| 260 |
repo_id="amphion/Vevo",
|
| 261 |
repo_type="model",
|
|
@@ -264,7 +264,7 @@ def get_pipeline(pipeline_type):
|
|
| 264 |
)
|
| 265 |
content_style_tokenizer_ckpt_path = os.path.join(local_dir, "tokenizer/vq8192")
|
| 266 |
|
| 267 |
-
#
|
| 268 |
local_dir = snapshot_download(
|
| 269 |
repo_id="amphion/Vevo",
|
| 270 |
repo_type="model",
|
|
@@ -274,7 +274,7 @@ def get_pipeline(pipeline_type):
|
|
| 274 |
fmt_cfg_path = "./models/vc/vevo/config/Vq8192ToMels.json"
|
| 275 |
fmt_ckpt_path = os.path.join(local_dir, "acoustic_modeling/Vq8192ToMels")
|
| 276 |
|
| 277 |
-
#
|
| 278 |
local_dir = snapshot_download(
|
| 279 |
repo_id="amphion/Vevo",
|
| 280 |
repo_type="model",
|
|
@@ -284,7 +284,7 @@ def get_pipeline(pipeline_type):
|
|
| 284 |
vocoder_cfg_path = "./models/vc/vevo/config/Vocoder.json"
|
| 285 |
vocoder_ckpt_path = os.path.join(local_dir, "acoustic_modeling/Vocoder")
|
| 286 |
|
| 287 |
-
#
|
| 288 |
inference_pipeline = VevoInferencePipeline(
|
| 289 |
content_style_tokenizer_ckpt_path=content_style_tokenizer_ckpt_path,
|
| 290 |
fmt_cfg_path=fmt_cfg_path,
|
|
@@ -295,7 +295,7 @@ def get_pipeline(pipeline_type):
|
|
| 295 |
)
|
| 296 |
|
| 297 |
elif pipeline_type == "tts":
|
| 298 |
-
#
|
| 299 |
local_dir = snapshot_download(
|
| 300 |
repo_id="amphion/Vevo",
|
| 301 |
repo_type="model",
|
|
@@ -304,7 +304,7 @@ def get_pipeline(pipeline_type):
|
|
| 304 |
)
|
| 305 |
content_style_tokenizer_ckpt_path = os.path.join(local_dir, "tokenizer/vq8192")
|
| 306 |
|
| 307 |
-
#
|
| 308 |
local_dir = snapshot_download(
|
| 309 |
repo_id="amphion/Vevo",
|
| 310 |
repo_type="model",
|
|
@@ -314,7 +314,7 @@ def get_pipeline(pipeline_type):
|
|
| 314 |
ar_cfg_path = "./models/vc/vevo/config/PhoneToVq8192.json"
|
| 315 |
ar_ckpt_path = os.path.join(local_dir, "contentstyle_modeling/PhoneToVq8192")
|
| 316 |
|
| 317 |
-
#
|
| 318 |
local_dir = snapshot_download(
|
| 319 |
repo_id="amphion/Vevo",
|
| 320 |
repo_type="model",
|
|
@@ -324,7 +324,7 @@ def get_pipeline(pipeline_type):
|
|
| 324 |
fmt_cfg_path = "./models/vc/vevo/config/Vq8192ToMels.json"
|
| 325 |
fmt_ckpt_path = os.path.join(local_dir, "acoustic_modeling/Vq8192ToMels")
|
| 326 |
|
| 327 |
-
#
|
| 328 |
local_dir = snapshot_download(
|
| 329 |
repo_id="amphion/Vevo",
|
| 330 |
repo_type="model",
|
|
@@ -334,7 +334,7 @@ def get_pipeline(pipeline_type):
|
|
| 334 |
vocoder_cfg_path = "./models/vc/vevo/config/Vocoder.json"
|
| 335 |
vocoder_ckpt_path = os.path.join(local_dir, "acoustic_modeling/Vocoder")
|
| 336 |
|
| 337 |
-
#
|
| 338 |
inference_pipeline = VevoInferencePipeline(
|
| 339 |
content_style_tokenizer_ckpt_path=content_style_tokenizer_ckpt_path,
|
| 340 |
ar_cfg_path=ar_cfg_path,
|
|
@@ -346,33 +346,33 @@ def get_pipeline(pipeline_type):
|
|
| 346 |
device=device,
|
| 347 |
)
|
| 348 |
|
| 349 |
-
#
|
| 350 |
inference_pipelines[pipeline_type] = inference_pipeline
|
| 351 |
return inference_pipeline
|
| 352 |
|
| 353 |
-
#
|
| 354 |
@spaces.GPU()
|
| 355 |
def vevo_style(content_wav, style_wav):
|
| 356 |
temp_content_path = "wav/temp_content.wav"
|
| 357 |
temp_style_path = "wav/temp_style.wav"
|
| 358 |
output_path = "wav/output_vevostyle.wav"
|
| 359 |
|
| 360 |
-
#
|
| 361 |
if content_wav is None or style_wav is None:
|
| 362 |
raise ValueError("Please upload audio files")
|
| 363 |
|
| 364 |
-
#
|
| 365 |
if isinstance(content_wav, tuple) and len(content_wav) == 2:
|
| 366 |
if isinstance(content_wav[0], np.ndarray):
|
| 367 |
content_data, content_sr = content_wav
|
| 368 |
else:
|
| 369 |
content_sr, content_data = content_wav
|
| 370 |
|
| 371 |
-
#
|
| 372 |
if len(content_data.shape) > 1 and content_data.shape[1] > 1:
|
| 373 |
content_data = np.mean(content_data, axis=1)
|
| 374 |
|
| 375 |
-
#
|
| 376 |
if content_sr != 24000:
|
| 377 |
content_tensor = torch.FloatTensor(content_data).unsqueeze(0)
|
| 378 |
content_tensor = torchaudio.functional.resample(content_tensor, content_sr, 24000)
|
|
@@ -380,7 +380,7 @@ def vevo_style(content_wav, style_wav):
|
|
| 380 |
else:
|
| 381 |
content_tensor = torch.FloatTensor(content_data).unsqueeze(0)
|
| 382 |
|
| 383 |
-
#
|
| 384 |
content_tensor = content_tensor / (torch.max(torch.abs(content_tensor)) + 1e-6) * 0.95
|
| 385 |
else:
|
| 386 |
raise ValueError("Invalid content audio format")
|
|
@@ -390,11 +390,11 @@ def vevo_style(content_wav, style_wav):
|
|
| 390 |
else:
|
| 391 |
style_sr, style_data = style_wav
|
| 392 |
|
| 393 |
-
#
|
| 394 |
if len(style_data.shape) > 1 and style_data.shape[1] > 1:
|
| 395 |
style_data = np.mean(style_data, axis=1)
|
| 396 |
|
| 397 |
-
#
|
| 398 |
if style_sr != 24000:
|
| 399 |
style_tensor = torch.FloatTensor(style_data).unsqueeze(0)
|
| 400 |
style_tensor = torchaudio.functional.resample(style_tensor, style_sr, 24000)
|
|
@@ -402,22 +402,22 @@ def vevo_style(content_wav, style_wav):
|
|
| 402 |
else:
|
| 403 |
style_tensor = torch.FloatTensor(style_data).unsqueeze(0)
|
| 404 |
|
| 405 |
-
#
|
| 406 |
style_tensor = style_tensor / (torch.max(torch.abs(style_tensor)) + 1e-6) * 0.95
|
| 407 |
|
| 408 |
-
#
|
| 409 |
print(f"Content audio shape: {content_tensor.shape}, sample rate: {content_sr}")
|
| 410 |
print(f"Style audio shape: {style_tensor.shape}, sample rate: {style_sr}")
|
| 411 |
|
| 412 |
-
#
|
| 413 |
torchaudio.save(temp_content_path, content_tensor, content_sr)
|
| 414 |
torchaudio.save(temp_style_path, style_tensor, style_sr)
|
| 415 |
|
| 416 |
try:
|
| 417 |
-
#
|
| 418 |
pipeline = get_pipeline("style")
|
| 419 |
|
| 420 |
-
#
|
| 421 |
gen_audio = pipeline.inference_ar_and_fm(
|
| 422 |
src_wav_path=temp_content_path,
|
| 423 |
src_text=None,
|
|
@@ -425,14 +425,14 @@ def vevo_style(content_wav, style_wav):
|
|
| 425 |
timbre_ref_wav_path=temp_content_path,
|
| 426 |
)
|
| 427 |
|
| 428 |
-
#
|
| 429 |
if torch.isnan(gen_audio).any() or torch.isinf(gen_audio).any():
|
| 430 |
print("Warning: Generated audio contains NaN or Inf values")
|
| 431 |
gen_audio = torch.nan_to_num(gen_audio, nan=0.0, posinf=0.95, neginf=-0.95)
|
| 432 |
|
| 433 |
print(f"Generated audio shape: {gen_audio.shape}, max: {torch.max(gen_audio)}, min: {torch.min(gen_audio)}")
|
| 434 |
|
| 435 |
-
#
|
| 436 |
save_audio(gen_audio, output_path=output_path)
|
| 437 |
|
| 438 |
return output_path
|
|
@@ -448,22 +448,22 @@ def vevo_timbre(content_wav, reference_wav):
|
|
| 448 |
temp_reference_path = "wav/temp_reference.wav"
|
| 449 |
output_path = "wav/output_vevotimbre.wav"
|
| 450 |
|
| 451 |
-
#
|
| 452 |
if content_wav is None or reference_wav is None:
|
| 453 |
raise ValueError("Please upload audio files")
|
| 454 |
|
| 455 |
-
#
|
| 456 |
if isinstance(content_wav, tuple) and len(content_wav) == 2:
|
| 457 |
if isinstance(content_wav[0], np.ndarray):
|
| 458 |
content_data, content_sr = content_wav
|
| 459 |
else:
|
| 460 |
content_sr, content_data = content_wav
|
| 461 |
|
| 462 |
-
#
|
| 463 |
if len(content_data.shape) > 1 and content_data.shape[1] > 1:
|
| 464 |
content_data = np.mean(content_data, axis=1)
|
| 465 |
|
| 466 |
-
#
|
| 467 |
if content_sr != 24000:
|
| 468 |
content_tensor = torch.FloatTensor(content_data).unsqueeze(0)
|
| 469 |
content_tensor = torchaudio.functional.resample(content_tensor, content_sr, 24000)
|
|
@@ -471,23 +471,23 @@ def vevo_timbre(content_wav, reference_wav):
|
|
| 471 |
else:
|
| 472 |
content_tensor = torch.FloatTensor(content_data).unsqueeze(0)
|
| 473 |
|
| 474 |
-
#
|
| 475 |
content_tensor = content_tensor / (torch.max(torch.abs(content_tensor)) + 1e-6) * 0.95
|
| 476 |
else:
|
| 477 |
raise ValueError("Invalid content audio format")
|
| 478 |
|
| 479 |
-
#
|
| 480 |
if isinstance(reference_wav, tuple) and len(reference_wav) == 2:
|
| 481 |
if isinstance(reference_wav[0], np.ndarray):
|
| 482 |
reference_data, reference_sr = reference_wav
|
| 483 |
else:
|
| 484 |
reference_sr, reference_data = reference_wav
|
| 485 |
|
| 486 |
-
#
|
| 487 |
if len(reference_data.shape) > 1 and reference_data.shape[1] > 1:
|
| 488 |
reference_data = np.mean(reference_data, axis=1)
|
| 489 |
|
| 490 |
-
#
|
| 491 |
if reference_sr != 24000:
|
| 492 |
reference_tensor = torch.FloatTensor(reference_data).unsqueeze(0)
|
| 493 |
reference_tensor = torchaudio.functional.resample(reference_tensor, reference_sr, 24000)
|
|
@@ -495,38 +495,38 @@ def vevo_timbre(content_wav, reference_wav):
|
|
| 495 |
else:
|
| 496 |
reference_tensor = torch.FloatTensor(reference_data).unsqueeze(0)
|
| 497 |
|
| 498 |
-
#
|
| 499 |
reference_tensor = reference_tensor / (torch.max(torch.abs(reference_tensor)) + 1e-6) * 0.95
|
| 500 |
else:
|
| 501 |
raise ValueError("Invalid reference audio format")
|
| 502 |
|
| 503 |
-
#
|
| 504 |
print(f"Content audio shape: {content_tensor.shape}, sample rate: {content_sr}")
|
| 505 |
print(f"Reference audio shape: {reference_tensor.shape}, sample rate: {reference_sr}")
|
| 506 |
|
| 507 |
-
#
|
| 508 |
torchaudio.save(temp_content_path, content_tensor, content_sr)
|
| 509 |
torchaudio.save(temp_reference_path, reference_tensor, reference_sr)
|
| 510 |
|
| 511 |
try:
|
| 512 |
-
#
|
| 513 |
pipeline = get_pipeline("timbre")
|
| 514 |
|
| 515 |
-
#
|
| 516 |
gen_audio = pipeline.inference_fm(
|
| 517 |
src_wav_path=temp_content_path,
|
| 518 |
timbre_ref_wav_path=temp_reference_path,
|
| 519 |
flow_matching_steps=32,
|
| 520 |
)
|
| 521 |
|
| 522 |
-
#
|
| 523 |
if torch.isnan(gen_audio).any() or torch.isinf(gen_audio).any():
|
| 524 |
print("Warning: Generated audio contains NaN or Inf values")
|
| 525 |
gen_audio = torch.nan_to_num(gen_audio, nan=0.0, posinf=0.95, neginf=-0.95)
|
| 526 |
|
| 527 |
print(f"Generated audio shape: {gen_audio.shape}, max: {torch.max(gen_audio)}, min: {torch.min(gen_audio)}")
|
| 528 |
|
| 529 |
-
#
|
| 530 |
save_audio(gen_audio, output_path=output_path)
|
| 531 |
|
| 532 |
return output_path
|
|
@@ -543,22 +543,22 @@ def vevo_voice(content_wav, style_reference_wav, timbre_reference_wav):
|
|
| 543 |
temp_timbre_path = "wav/temp_timbre.wav"
|
| 544 |
output_path = "wav/output_vevovoice.wav"
|
| 545 |
|
| 546 |
-
#
|
| 547 |
if content_wav is None or style_reference_wav is None or timbre_reference_wav is None:
|
| 548 |
raise ValueError("Please upload all required audio files")
|
| 549 |
|
| 550 |
-
#
|
| 551 |
if isinstance(content_wav, tuple) and len(content_wav) == 2:
|
| 552 |
if isinstance(content_wav[0], np.ndarray):
|
| 553 |
content_data, content_sr = content_wav
|
| 554 |
else:
|
| 555 |
content_sr, content_data = content_wav
|
| 556 |
|
| 557 |
-
#
|
| 558 |
if len(content_data.shape) > 1 and content_data.shape[1] > 1:
|
| 559 |
content_data = np.mean(content_data, axis=1)
|
| 560 |
|
| 561 |
-
#
|
| 562 |
if content_sr != 24000:
|
| 563 |
content_tensor = torch.FloatTensor(content_data).unsqueeze(0)
|
| 564 |
content_tensor = torchaudio.functional.resample(content_tensor, content_sr, 24000)
|
|
@@ -566,23 +566,23 @@ def vevo_voice(content_wav, style_reference_wav, timbre_reference_wav):
|
|
| 566 |
else:
|
| 567 |
content_tensor = torch.FloatTensor(content_data).unsqueeze(0)
|
| 568 |
|
| 569 |
-
#
|
| 570 |
content_tensor = content_tensor / (torch.max(torch.abs(content_tensor)) + 1e-6) * 0.95
|
| 571 |
else:
|
| 572 |
raise ValueError("Invalid content audio format")
|
| 573 |
|
| 574 |
-
#
|
| 575 |
if isinstance(style_reference_wav, tuple) and len(style_reference_wav) == 2:
|
| 576 |
if isinstance(style_reference_wav[0], np.ndarray):
|
| 577 |
style_data, style_sr = style_reference_wav
|
| 578 |
else:
|
| 579 |
style_sr, style_data = style_reference_wav
|
| 580 |
|
| 581 |
-
#
|
| 582 |
if len(style_data.shape) > 1 and style_data.shape[1] > 1:
|
| 583 |
style_data = np.mean(style_data, axis=1)
|
| 584 |
|
| 585 |
-
#
|
| 586 |
if style_sr != 24000:
|
| 587 |
style_tensor = torch.FloatTensor(style_data).unsqueeze(0)
|
| 588 |
style_tensor = torchaudio.functional.resample(style_tensor, style_sr, 24000)
|
|
@@ -590,23 +590,23 @@ def vevo_voice(content_wav, style_reference_wav, timbre_reference_wav):
|
|
| 590 |
else:
|
| 591 |
style_tensor = torch.FloatTensor(style_data).unsqueeze(0)
|
| 592 |
|
| 593 |
-
#
|
| 594 |
style_tensor = style_tensor / (torch.max(torch.abs(style_tensor)) + 1e-6) * 0.95
|
| 595 |
else:
|
| 596 |
raise ValueError("Invalid style reference audio format")
|
| 597 |
|
| 598 |
-
#
|
| 599 |
if isinstance(timbre_reference_wav, tuple) and len(timbre_reference_wav) == 2:
|
| 600 |
if isinstance(timbre_reference_wav[0], np.ndarray):
|
| 601 |
timbre_data, timbre_sr = timbre_reference_wav
|
| 602 |
else:
|
| 603 |
timbre_sr, timbre_data = timbre_reference_wav
|
| 604 |
|
| 605 |
-
#
|
| 606 |
if len(timbre_data.shape) > 1 and timbre_data.shape[1] > 1:
|
| 607 |
timbre_data = np.mean(timbre_data, axis=1)
|
| 608 |
|
| 609 |
-
#
|
| 610 |
if timbre_sr != 24000:
|
| 611 |
timbre_tensor = torch.FloatTensor(timbre_data).unsqueeze(0)
|
| 612 |
timbre_tensor = torchaudio.functional.resample(timbre_tensor, timbre_sr, 24000)
|
|
@@ -614,26 +614,26 @@ def vevo_voice(content_wav, style_reference_wav, timbre_reference_wav):
|
|
| 614 |
else:
|
| 615 |
timbre_tensor = torch.FloatTensor(timbre_data).unsqueeze(0)
|
| 616 |
|
| 617 |
-
#
|
| 618 |
timbre_tensor = timbre_tensor / (torch.max(torch.abs(timbre_tensor)) + 1e-6) * 0.95
|
| 619 |
else:
|
| 620 |
raise ValueError("Invalid timbre reference audio format")
|
| 621 |
|
| 622 |
-
#
|
| 623 |
print(f"Content audio shape: {content_tensor.shape}, sample rate: {content_sr}")
|
| 624 |
print(f"Style reference audio shape: {style_tensor.shape}, sample rate: {style_sr}")
|
| 625 |
print(f"Timbre reference audio shape: {timbre_tensor.shape}, sample rate: {timbre_sr}")
|
| 626 |
|
| 627 |
-
#
|
| 628 |
torchaudio.save(temp_content_path, content_tensor, content_sr)
|
| 629 |
torchaudio.save(temp_style_path, style_tensor, style_sr)
|
| 630 |
torchaudio.save(temp_timbre_path, timbre_tensor, timbre_sr)
|
| 631 |
|
| 632 |
try:
|
| 633 |
-
#
|
| 634 |
pipeline = get_pipeline("voice")
|
| 635 |
|
| 636 |
-
#
|
| 637 |
gen_audio = pipeline.inference_ar_and_fm(
|
| 638 |
src_wav_path=temp_content_path,
|
| 639 |
src_text=None,
|
|
@@ -641,14 +641,14 @@ def vevo_voice(content_wav, style_reference_wav, timbre_reference_wav):
|
|
| 641 |
timbre_ref_wav_path=temp_timbre_path,
|
| 642 |
)
|
| 643 |
|
| 644 |
-
#
|
| 645 |
if torch.isnan(gen_audio).any() or torch.isinf(gen_audio).any():
|
| 646 |
print("Warning: Generated audio contains NaN or Inf values")
|
| 647 |
gen_audio = torch.nan_to_num(gen_audio, nan=0.0, posinf=0.95, neginf=-0.95)
|
| 648 |
|
| 649 |
print(f"Generated audio shape: {gen_audio.shape}, max: {torch.max(gen_audio)}, min: {torch.min(gen_audio)}")
|
| 650 |
|
| 651 |
-
#
|
| 652 |
save_audio(gen_audio, output_path=output_path)
|
| 653 |
|
| 654 |
return output_path
|
|
@@ -664,22 +664,22 @@ def vevo_tts(text, ref_wav, timbre_ref_wav=None, style_ref_text=None, src_langua
|
|
| 664 |
temp_timbre_path = "wav/temp_timbre.wav"
|
| 665 |
output_path = "wav/output_vevotts.wav"
|
| 666 |
|
| 667 |
-
#
|
| 668 |
if ref_wav is None:
|
| 669 |
raise ValueError("Please upload a reference audio file")
|
| 670 |
|
| 671 |
-
#
|
| 672 |
if isinstance(ref_wav, tuple) and len(ref_wav) == 2:
|
| 673 |
if isinstance(ref_wav[0], np.ndarray):
|
| 674 |
ref_data, ref_sr = ref_wav
|
| 675 |
else:
|
| 676 |
ref_sr, ref_data = ref_wav
|
| 677 |
|
| 678 |
-
#
|
| 679 |
if len(ref_data.shape) > 1 and ref_data.shape[1] > 1:
|
| 680 |
ref_data = np.mean(ref_data, axis=1)
|
| 681 |
|
| 682 |
-
#
|
| 683 |
if ref_sr != 24000:
|
| 684 |
ref_tensor = torch.FloatTensor(ref_data).unsqueeze(0)
|
| 685 |
ref_tensor = torchaudio.functional.resample(ref_tensor, ref_sr, 24000)
|
|
@@ -687,17 +687,17 @@ def vevo_tts(text, ref_wav, timbre_ref_wav=None, style_ref_text=None, src_langua
|
|
| 687 |
else:
|
| 688 |
ref_tensor = torch.FloatTensor(ref_data).unsqueeze(0)
|
| 689 |
|
| 690 |
-
#
|
| 691 |
ref_tensor = ref_tensor / (torch.max(torch.abs(ref_tensor)) + 1e-6) * 0.95
|
| 692 |
else:
|
| 693 |
raise ValueError("Invalid reference audio format")
|
| 694 |
|
| 695 |
-
#
|
| 696 |
print(f"Reference audio shape: {ref_tensor.shape}, sample rate: {ref_sr}")
|
| 697 |
if style_ref_text:
|
| 698 |
print(f"Style reference text: {style_ref_text}, language: {style_ref_text_language}")
|
| 699 |
|
| 700 |
-
#
|
| 701 |
torchaudio.save(temp_ref_path, ref_tensor, ref_sr)
|
| 702 |
|
| 703 |
if timbre_ref_wav is not None:
|
|
@@ -707,11 +707,11 @@ def vevo_tts(text, ref_wav, timbre_ref_wav=None, style_ref_text=None, src_langua
|
|
| 707 |
else:
|
| 708 |
timbre_sr, timbre_data = timbre_ref_wav
|
| 709 |
|
| 710 |
-
#
|
| 711 |
if len(timbre_data.shape) > 1 and timbre_data.shape[1] > 1:
|
| 712 |
timbre_data = np.mean(timbre_data, axis=1)
|
| 713 |
|
| 714 |
-
#
|
| 715 |
if timbre_sr != 24000:
|
| 716 |
timbre_tensor = torch.FloatTensor(timbre_data).unsqueeze(0)
|
| 717 |
timbre_tensor = torchaudio.functional.resample(timbre_tensor, timbre_sr, 24000)
|
|
@@ -719,7 +719,7 @@ def vevo_tts(text, ref_wav, timbre_ref_wav=None, style_ref_text=None, src_langua
|
|
| 719 |
else:
|
| 720 |
timbre_tensor = torch.FloatTensor(timbre_data).unsqueeze(0)
|
| 721 |
|
| 722 |
-
#
|
| 723 |
timbre_tensor = timbre_tensor / (torch.max(torch.abs(timbre_tensor)) + 1e-6) * 0.95
|
| 724 |
|
| 725 |
print(f"Timbre reference audio shape: {timbre_tensor.shape}, sample rate: {timbre_sr}")
|
|
@@ -730,10 +730,10 @@ def vevo_tts(text, ref_wav, timbre_ref_wav=None, style_ref_text=None, src_langua
|
|
| 730 |
temp_timbre_path = temp_ref_path
|
| 731 |
|
| 732 |
try:
|
| 733 |
-
#
|
| 734 |
pipeline = get_pipeline("tts")
|
| 735 |
|
| 736 |
-
#
|
| 737 |
gen_audio = pipeline.inference_ar_and_fm(
|
| 738 |
src_wav_path=None,
|
| 739 |
src_text=text,
|
|
@@ -744,14 +744,14 @@ def vevo_tts(text, ref_wav, timbre_ref_wav=None, style_ref_text=None, src_langua
|
|
| 744 |
style_ref_wav_text_language=style_ref_text_language,
|
| 745 |
)
|
| 746 |
|
| 747 |
-
#
|
| 748 |
if torch.isnan(gen_audio).any() or torch.isinf(gen_audio).any():
|
| 749 |
print("Warning: Generated audio contains NaN or Inf values")
|
| 750 |
gen_audio = torch.nan_to_num(gen_audio, nan=0.0, posinf=0.95, neginf=-0.95)
|
| 751 |
|
| 752 |
print(f"Generated audio shape: {gen_audio.shape}, max: {torch.max(gen_audio)}, min: {torch.min(gen_audio)}")
|
| 753 |
|
| 754 |
-
#
|
| 755 |
save_audio(gen_audio, output_path=output_path)
|
| 756 |
|
| 757 |
return output_path
|
|
@@ -761,10 +761,10 @@ def vevo_tts(text, ref_wav, timbre_ref_wav=None, style_ref_text=None, src_langua
|
|
| 761 |
traceback.print_exc()
|
| 762 |
raise e
|
| 763 |
|
| 764 |
-
#
|
| 765 |
with gr.Blocks(title="Vevo: Controllable Zero-Shot Voice Imitation with Self-Supervised Disentanglement") as demo:
|
| 766 |
gr.Markdown("# Vevo: Controllable Zero-Shot Voice Imitation with Self-Supervised Disentanglement")
|
| 767 |
-
#
|
| 768 |
with gr.Row(elem_id="links_row"):
|
| 769 |
gr.HTML("""
|
| 770 |
<div style="display: flex; justify-content: flex-start; gap: 8px; margin: 0 0; padding-left: 0px;">
|
|
@@ -850,5 +850,5 @@ with gr.Blocks(title="Vevo: Controllable Zero-Shot Voice Imitation with Self-Sup
|
|
| 850 |
For more information, visit the [Amphion project](https://github.com/open-mmlab/Amphion)
|
| 851 |
""")
|
| 852 |
|
| 853 |
-
#
|
| 854 |
demo.launch()
|
|
|
|
| 13 |
import spaces
|
| 14 |
|
| 15 |
def install_espeak():
|
| 16 |
+
"""Detect and install espeak-ng dependency"""
|
| 17 |
try:
|
| 18 |
+
# Check if espeak-ng is already installed
|
| 19 |
result = subprocess.run(["which", "espeak-ng"], capture_output=True, text=True)
|
| 20 |
if result.returncode != 0:
|
| 21 |
+
print("Detected espeak-ng not installed in the system, attempting to install...")
|
| 22 |
+
# Try to install espeak-ng and its data using apt-get
|
| 23 |
subprocess.run(["apt-get", "update"], check=True)
|
| 24 |
+
# Install espeak-ng and the corresponding language data package
|
| 25 |
subprocess.run(["apt-get", "install", "-y", "espeak-ng", "espeak-ng-data"], check=True)
|
| 26 |
+
print("espeak-ng and its data packages installed successfully!")
|
| 27 |
else:
|
| 28 |
+
print("espeak-ng is already installed in the system.")
|
| 29 |
+
# Even if already installed, try to update data to ensure integrity (optional but sometimes helpful)
|
| 30 |
+
# print("Attempting to update espeak-ng data...")
|
| 31 |
# subprocess.run(["apt-get", "update"], check=True)
|
| 32 |
# subprocess.run(["apt-get", "install", "--only-upgrade", "-y", "espeak-ng-data"], check=True)
|
| 33 |
|
| 34 |
+
# Verify Chinese support (optional)
|
| 35 |
try:
|
| 36 |
voices_result = subprocess.run(["espeak-ng", "--voices=cmn"], capture_output=True, text=True, check=True)
|
| 37 |
if "cmn" in voices_result.stdout:
|
| 38 |
+
print("espeak-ng supports 'cmn' language.")
|
| 39 |
else:
|
| 40 |
+
print("Warning: espeak-ng is installed, but 'cmn' language still seems unavailable.")
|
| 41 |
except Exception as e:
|
| 42 |
+
print(f"Error verifying espeak-ng Chinese support (may not affect functionality): {e}")
|
| 43 |
|
| 44 |
except Exception as e:
|
| 45 |
+
print(f"Error installing espeak-ng: {e}")
|
| 46 |
+
print("Please try to run manually: apt-get update && apt-get install -y espeak-ng espeak-ng-data")
|
| 47 |
|
| 48 |
+
# Install espeak before all other operations
|
| 49 |
install_espeak()
|
| 50 |
|
| 51 |
def patch_langsegment_init():
|
| 52 |
try:
|
| 53 |
+
# Try to find the location of the LangSegment package
|
| 54 |
spec = importlib.util.find_spec("LangSegment")
|
| 55 |
if spec is None or spec.origin is None:
|
| 56 |
+
print("Unable to locate LangSegment package.")
|
| 57 |
return
|
| 58 |
|
| 59 |
+
# Build the path to __init__.py
|
| 60 |
init_path = os.path.join(os.path.dirname(spec.origin), '__init__.py')
|
| 61 |
|
| 62 |
if not os.path.exists(init_path):
|
| 63 |
+
print(f"LangSegment __init__.py file not found at: {init_path}")
|
| 64 |
+
# Try to find in site-packages, applicable in some environments
|
| 65 |
for site_pkg_path in site.getsitepackages():
|
| 66 |
potential_path = os.path.join(site_pkg_path, 'LangSegment', '__init__.py')
|
| 67 |
if os.path.exists(potential_path):
|
| 68 |
init_path = potential_path
|
| 69 |
+
print(f"Found __init__.py in site-packages: {init_path}")
|
| 70 |
break
|
| 71 |
+
else: # If the loop ends normally (no break)
|
| 72 |
+
print(f"Also unable to find __init__.py in site-packages")
|
| 73 |
return
|
| 74 |
|
| 75 |
|
| 76 |
+
print(f"Attempting to read LangSegment __init__.py: {init_path}")
|
| 77 |
with open(init_path, 'r') as f:
|
| 78 |
lines = f.readlines()
|
| 79 |
|
|
|
|
| 85 |
stripped_line = line.strip()
|
| 86 |
if stripped_line.startswith(target_line_prefix):
|
| 87 |
if 'setLangfilters' in stripped_line or 'getLangfilters' in stripped_line:
|
| 88 |
+
print(f"Found line that needs modification: {stripped_line}")
|
| 89 |
+
# Remove setLangfilters and getLangfilters
|
| 90 |
modified_line = stripped_line.replace(',setLangfilters', '')
|
| 91 |
modified_line = modified_line.replace(',getLangfilters', '')
|
| 92 |
+
# Ensure comma handling is correct (e.g., if they are the last items)
|
| 93 |
modified_line = modified_line.replace('setLangfilters,', '')
|
| 94 |
modified_line = modified_line.replace('getLangfilters,', '')
|
| 95 |
+
# If they are the only extra imports, remove any redundant commas
|
| 96 |
modified_line = modified_line.rstrip(',')
|
| 97 |
new_lines.append(modified_line + '\n')
|
| 98 |
modified = True
|
| 99 |
+
print(f"Modified line: {modified_line.strip()}")
|
| 100 |
else:
|
| 101 |
+
new_lines.append(line) # Line is fine, keep as is
|
| 102 |
else:
|
| 103 |
+
new_lines.append(line) # Non-target line, keep as is
|
| 104 |
|
| 105 |
if modified:
|
| 106 |
+
print(f"Attempting to write back modified LangSegment __init__.py to: {init_path}")
|
| 107 |
try:
|
| 108 |
with open(init_path, 'w') as f:
|
| 109 |
f.writelines(new_lines)
|
| 110 |
+
print("LangSegment __init__.py modified successfully.")
|
| 111 |
+
# Try to reload the module to make changes effective (may not work, depending on import chain)
|
| 112 |
try:
|
| 113 |
import LangSegment
|
| 114 |
importlib.reload(LangSegment)
|
| 115 |
+
print("LangSegment module has been attempted to reload.")
|
| 116 |
except Exception as reload_e:
|
| 117 |
+
print(f"Error reloading LangSegment (may have no impact): {reload_e}")
|
| 118 |
except PermissionError:
|
| 119 |
+
print(f"Error: Insufficient permissions to modify {init_path}. Consider modifying requirements.txt.")
|
| 120 |
except Exception as write_e:
|
| 121 |
+
print(f"Other error occurred when writing LangSegment __init__.py: {write_e}")
|
| 122 |
else:
|
| 123 |
+
print("LangSegment __init__.py doesn't need modification.")
|
| 124 |
|
| 125 |
except ImportError:
|
| 126 |
+
print("LangSegment package not found, unable to fix.")
|
| 127 |
except Exception as e:
|
| 128 |
+
print(f"Unexpected error occurred when fixing LangSegment package: {e}")
|
| 129 |
|
| 130 |
+
# Execute the fix before all other imports (especially Amphion) that might trigger LangSegment
|
| 131 |
patch_langsegment_init()
|
| 132 |
|
| 133 |
+
# Clone Amphion repository
|
| 134 |
if not os.path.exists("Amphion"):
|
| 135 |
subprocess.run(["git", "clone", "https://github.com/open-mmlab/Amphion.git"])
|
| 136 |
os.chdir("Amphion")
|
|
|
|
| 138 |
if not os.getcwd().endswith("Amphion"):
|
| 139 |
os.chdir("Amphion")
|
| 140 |
|
| 141 |
+
# Add Amphion to the path
|
| 142 |
if os.path.dirname(os.path.abspath("Amphion")) not in sys.path:
|
| 143 |
sys.path.append(os.path.dirname(os.path.abspath("Amphion")))
|
| 144 |
|
| 145 |
+
# Ensure needed directories exist
|
| 146 |
os.makedirs("wav", exist_ok=True)
|
| 147 |
os.makedirs("ckpts/Vevo", exist_ok=True)
|
| 148 |
|
| 149 |
from models.vc.vevo.vevo_utils import VevoInferencePipeline, save_audio, load_wav
|
| 150 |
|
| 151 |
+
# Download and setup config files
|
| 152 |
def setup_configs():
|
| 153 |
config_path = "models/vc/vevo/config"
|
| 154 |
os.makedirs(config_path, exist_ok=True)
|
|
|
|
| 171 |
repo_type="model",
|
| 172 |
)
|
| 173 |
os.makedirs(os.path.dirname(file_path), exist_ok=True)
|
| 174 |
+
# Copy file to target location
|
| 175 |
subprocess.run(["cp", file_data, file_path])
|
| 176 |
except Exception as e:
|
| 177 |
+
print(f"Error downloading config file {file}: {e}")
|
| 178 |
|
| 179 |
setup_configs()
|
| 180 |
|
| 181 |
+
# Device configuration
|
| 182 |
device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
|
| 183 |
+
print(f"Using device: {device}")
|
| 184 |
|
| 185 |
+
# Initialize pipeline dictionary
|
| 186 |
inference_pipelines = {}
|
| 187 |
|
| 188 |
def get_pipeline(pipeline_type):
|
| 189 |
if pipeline_type in inference_pipelines:
|
| 190 |
return inference_pipelines[pipeline_type]
|
| 191 |
|
| 192 |
+
# Initialize pipeline based on the required pipeline type
|
| 193 |
if pipeline_type == "style" or pipeline_type == "voice":
|
| 194 |
+
# Download Content Tokenizer
|
| 195 |
local_dir = snapshot_download(
|
| 196 |
repo_id="amphion/Vevo",
|
| 197 |
repo_type="model",
|
|
|
|
| 202 |
local_dir, "tokenizer/vq32/hubert_large_l18_c32.pkl"
|
| 203 |
)
|
| 204 |
|
| 205 |
+
# Download Content-Style Tokenizer
|
| 206 |
local_dir = snapshot_download(
|
| 207 |
repo_id="amphion/Vevo",
|
| 208 |
repo_type="model",
|
|
|
|
| 211 |
)
|
| 212 |
content_style_tokenizer_ckpt_path = os.path.join(local_dir, "tokenizer/vq8192")
|
| 213 |
|
| 214 |
+
# Download Autoregressive Transformer
|
| 215 |
local_dir = snapshot_download(
|
| 216 |
repo_id="amphion/Vevo",
|
| 217 |
repo_type="model",
|
|
|
|
| 221 |
ar_cfg_path = "./models/vc/vevo/config/Vq32ToVq8192.json"
|
| 222 |
ar_ckpt_path = os.path.join(local_dir, "contentstyle_modeling/Vq32ToVq8192")
|
| 223 |
|
| 224 |
+
# Download Flow Matching Transformer
|
| 225 |
local_dir = snapshot_download(
|
| 226 |
repo_id="amphion/Vevo",
|
| 227 |
repo_type="model",
|
|
|
|
| 231 |
fmt_cfg_path = "./models/vc/vevo/config/Vq8192ToMels.json"
|
| 232 |
fmt_ckpt_path = os.path.join(local_dir, "acoustic_modeling/Vq8192ToMels")
|
| 233 |
|
| 234 |
+
# Download Vocoder
|
| 235 |
local_dir = snapshot_download(
|
| 236 |
repo_id="amphion/Vevo",
|
| 237 |
repo_type="model",
|
|
|
|
| 241 |
vocoder_cfg_path = "./models/vc/vevo/config/Vocoder.json"
|
| 242 |
vocoder_ckpt_path = os.path.join(local_dir, "acoustic_modeling/Vocoder")
|
| 243 |
|
| 244 |
+
# Initialize pipeline
|
| 245 |
inference_pipeline = VevoInferencePipeline(
|
| 246 |
content_tokenizer_ckpt_path=content_tokenizer_ckpt_path,
|
| 247 |
content_style_tokenizer_ckpt_path=content_style_tokenizer_ckpt_path,
|
|
|
|
| 255 |
)
|
| 256 |
|
| 257 |
elif pipeline_type == "timbre":
|
| 258 |
+
# Download Content-Style Tokenizer (only needed for timbre)
|
| 259 |
local_dir = snapshot_download(
|
| 260 |
repo_id="amphion/Vevo",
|
| 261 |
repo_type="model",
|
|
|
|
| 264 |
)
|
| 265 |
content_style_tokenizer_ckpt_path = os.path.join(local_dir, "tokenizer/vq8192")
|
| 266 |
|
| 267 |
+
# Download Flow Matching Transformer
|
| 268 |
local_dir = snapshot_download(
|
| 269 |
repo_id="amphion/Vevo",
|
| 270 |
repo_type="model",
|
|
|
|
| 274 |
fmt_cfg_path = "./models/vc/vevo/config/Vq8192ToMels.json"
|
| 275 |
fmt_ckpt_path = os.path.join(local_dir, "acoustic_modeling/Vq8192ToMels")
|
| 276 |
|
| 277 |
+
# Download Vocoder
|
| 278 |
local_dir = snapshot_download(
|
| 279 |
repo_id="amphion/Vevo",
|
| 280 |
repo_type="model",
|
|
|
|
| 284 |
vocoder_cfg_path = "./models/vc/vevo/config/Vocoder.json"
|
| 285 |
vocoder_ckpt_path = os.path.join(local_dir, "acoustic_modeling/Vocoder")
|
| 286 |
|
| 287 |
+
# Initialize pipeline
|
| 288 |
inference_pipeline = VevoInferencePipeline(
|
| 289 |
content_style_tokenizer_ckpt_path=content_style_tokenizer_ckpt_path,
|
| 290 |
fmt_cfg_path=fmt_cfg_path,
|
|
|
|
| 295 |
)
|
| 296 |
|
| 297 |
elif pipeline_type == "tts":
|
| 298 |
+
# Download Content-Style Tokenizer
|
| 299 |
local_dir = snapshot_download(
|
| 300 |
repo_id="amphion/Vevo",
|
| 301 |
repo_type="model",
|
|
|
|
| 304 |
)
|
| 305 |
content_style_tokenizer_ckpt_path = os.path.join(local_dir, "tokenizer/vq8192")
|
| 306 |
|
| 307 |
+
# Download Autoregressive Transformer (TTS specific)
|
| 308 |
local_dir = snapshot_download(
|
| 309 |
repo_id="amphion/Vevo",
|
| 310 |
repo_type="model",
|
|
|
|
| 314 |
ar_cfg_path = "./models/vc/vevo/config/PhoneToVq8192.json"
|
| 315 |
ar_ckpt_path = os.path.join(local_dir, "contentstyle_modeling/PhoneToVq8192")
|
| 316 |
|
| 317 |
+
# Download Flow Matching Transformer
|
| 318 |
local_dir = snapshot_download(
|
| 319 |
repo_id="amphion/Vevo",
|
| 320 |
repo_type="model",
|
|
|
|
| 324 |
fmt_cfg_path = "./models/vc/vevo/config/Vq8192ToMels.json"
|
| 325 |
fmt_ckpt_path = os.path.join(local_dir, "acoustic_modeling/Vq8192ToMels")
|
| 326 |
|
| 327 |
+
# Download Vocoder
|
| 328 |
local_dir = snapshot_download(
|
| 329 |
repo_id="amphion/Vevo",
|
| 330 |
repo_type="model",
|
|
|
|
| 334 |
vocoder_cfg_path = "./models/vc/vevo/config/Vocoder.json"
|
| 335 |
vocoder_ckpt_path = os.path.join(local_dir, "acoustic_modeling/Vocoder")
|
| 336 |
|
| 337 |
+
# Initialize pipeline
|
| 338 |
inference_pipeline = VevoInferencePipeline(
|
| 339 |
content_style_tokenizer_ckpt_path=content_style_tokenizer_ckpt_path,
|
| 340 |
ar_cfg_path=ar_cfg_path,
|
|
|
|
| 346 |
device=device,
|
| 347 |
)
|
| 348 |
|
| 349 |
+
# Cache pipeline instance
|
| 350 |
inference_pipelines[pipeline_type] = inference_pipeline
|
| 351 |
return inference_pipeline
|
| 352 |
|
| 353 |
+
# Implement VEVO functionality functions
|
| 354 |
@spaces.GPU()
|
| 355 |
def vevo_style(content_wav, style_wav):
|
| 356 |
temp_content_path = "wav/temp_content.wav"
|
| 357 |
temp_style_path = "wav/temp_style.wav"
|
| 358 |
output_path = "wav/output_vevostyle.wav"
|
| 359 |
|
| 360 |
+
# Check and process audio data
|
| 361 |
if content_wav is None or style_wav is None:
|
| 362 |
raise ValueError("Please upload audio files")
|
| 363 |
|
| 364 |
+
# Process audio format
|
| 365 |
if isinstance(content_wav, tuple) and len(content_wav) == 2:
|
| 366 |
if isinstance(content_wav[0], np.ndarray):
|
| 367 |
content_data, content_sr = content_wav
|
| 368 |
else:
|
| 369 |
content_sr, content_data = content_wav
|
| 370 |
|
| 371 |
+
# Ensure single channel
|
| 372 |
if len(content_data.shape) > 1 and content_data.shape[1] > 1:
|
| 373 |
content_data = np.mean(content_data, axis=1)
|
| 374 |
|
| 375 |
+
# Resample to 24kHz
|
| 376 |
if content_sr != 24000:
|
| 377 |
content_tensor = torch.FloatTensor(content_data).unsqueeze(0)
|
| 378 |
content_tensor = torchaudio.functional.resample(content_tensor, content_sr, 24000)
|
|
|
|
| 380 |
else:
|
| 381 |
content_tensor = torch.FloatTensor(content_data).unsqueeze(0)
|
| 382 |
|
| 383 |
+
# Normalize volume
|
| 384 |
content_tensor = content_tensor / (torch.max(torch.abs(content_tensor)) + 1e-6) * 0.95
|
| 385 |
else:
|
| 386 |
raise ValueError("Invalid content audio format")
|
|
|
|
| 390 |
else:
|
| 391 |
style_sr, style_data = style_wav
|
| 392 |
|
| 393 |
+
# Ensure single channel
|
| 394 |
if len(style_data.shape) > 1 and style_data.shape[1] > 1:
|
| 395 |
style_data = np.mean(style_data, axis=1)
|
| 396 |
|
| 397 |
+
# Resample to 24kHz
|
| 398 |
if style_sr != 24000:
|
| 399 |
style_tensor = torch.FloatTensor(style_data).unsqueeze(0)
|
| 400 |
style_tensor = torchaudio.functional.resample(style_tensor, style_sr, 24000)
|
|
|
|
| 402 |
else:
|
| 403 |
style_tensor = torch.FloatTensor(style_data).unsqueeze(0)
|
| 404 |
|
| 405 |
+
# Normalize volume
|
| 406 |
style_tensor = style_tensor / (torch.max(torch.abs(style_tensor)) + 1e-6) * 0.95
|
| 407 |
|
| 408 |
+
# Print debug information
|
| 409 |
print(f"Content audio shape: {content_tensor.shape}, sample rate: {content_sr}")
|
| 410 |
print(f"Style audio shape: {style_tensor.shape}, sample rate: {style_sr}")
|
| 411 |
|
| 412 |
+
# Save audio
|
| 413 |
torchaudio.save(temp_content_path, content_tensor, content_sr)
|
| 414 |
torchaudio.save(temp_style_path, style_tensor, style_sr)
|
| 415 |
|
| 416 |
try:
|
| 417 |
+
# Get pipeline
|
| 418 |
pipeline = get_pipeline("style")
|
| 419 |
|
| 420 |
+
# Inference
|
| 421 |
gen_audio = pipeline.inference_ar_and_fm(
|
| 422 |
src_wav_path=temp_content_path,
|
| 423 |
src_text=None,
|
|
|
|
| 425 |
timbre_ref_wav_path=temp_content_path,
|
| 426 |
)
|
| 427 |
|
| 428 |
+
# Check if generated audio is numerical anomaly
|
| 429 |
if torch.isnan(gen_audio).any() or torch.isinf(gen_audio).any():
|
| 430 |
print("Warning: Generated audio contains NaN or Inf values")
|
| 431 |
gen_audio = torch.nan_to_num(gen_audio, nan=0.0, posinf=0.95, neginf=-0.95)
|
| 432 |
|
| 433 |
print(f"Generated audio shape: {gen_audio.shape}, max: {torch.max(gen_audio)}, min: {torch.min(gen_audio)}")
|
| 434 |
|
| 435 |
+
# Save generated audio
|
| 436 |
save_audio(gen_audio, output_path=output_path)
|
| 437 |
|
| 438 |
return output_path
|
|
|
|
| 448 |
temp_reference_path = "wav/temp_reference.wav"
|
| 449 |
output_path = "wav/output_vevotimbre.wav"
|
| 450 |
|
| 451 |
+
# Check and process audio data
|
| 452 |
if content_wav is None or reference_wav is None:
|
| 453 |
raise ValueError("Please upload audio files")
|
| 454 |
|
| 455 |
+
# Process content audio format
|
| 456 |
if isinstance(content_wav, tuple) and len(content_wav) == 2:
|
| 457 |
if isinstance(content_wav[0], np.ndarray):
|
| 458 |
content_data, content_sr = content_wav
|
| 459 |
else:
|
| 460 |
content_sr, content_data = content_wav
|
| 461 |
|
| 462 |
+
# Ensure single channel
|
| 463 |
if len(content_data.shape) > 1 and content_data.shape[1] > 1:
|
| 464 |
content_data = np.mean(content_data, axis=1)
|
| 465 |
|
| 466 |
+
# Resample to 24kHz
|
| 467 |
if content_sr != 24000:
|
| 468 |
content_tensor = torch.FloatTensor(content_data).unsqueeze(0)
|
| 469 |
content_tensor = torchaudio.functional.resample(content_tensor, content_sr, 24000)
|
|
|
|
| 471 |
else:
|
| 472 |
content_tensor = torch.FloatTensor(content_data).unsqueeze(0)
|
| 473 |
|
| 474 |
+
# Normalize volume
|
| 475 |
content_tensor = content_tensor / (torch.max(torch.abs(content_tensor)) + 1e-6) * 0.95
|
| 476 |
else:
|
| 477 |
raise ValueError("Invalid content audio format")
|
| 478 |
|
| 479 |
+
# Process reference audio format
|
| 480 |
if isinstance(reference_wav, tuple) and len(reference_wav) == 2:
|
| 481 |
if isinstance(reference_wav[0], np.ndarray):
|
| 482 |
reference_data, reference_sr = reference_wav
|
| 483 |
else:
|
| 484 |
reference_sr, reference_data = reference_wav
|
| 485 |
|
| 486 |
+
# Ensure single channel
|
| 487 |
if len(reference_data.shape) > 1 and reference_data.shape[1] > 1:
|
| 488 |
reference_data = np.mean(reference_data, axis=1)
|
| 489 |
|
| 490 |
+
# Resample to 24kHz
|
| 491 |
if reference_sr != 24000:
|
| 492 |
reference_tensor = torch.FloatTensor(reference_data).unsqueeze(0)
|
| 493 |
reference_tensor = torchaudio.functional.resample(reference_tensor, reference_sr, 24000)
|
|
|
|
| 495 |
else:
|
| 496 |
reference_tensor = torch.FloatTensor(reference_data).unsqueeze(0)
|
| 497 |
|
| 498 |
+
# Normalize volume
|
| 499 |
reference_tensor = reference_tensor / (torch.max(torch.abs(reference_tensor)) + 1e-6) * 0.95
|
| 500 |
else:
|
| 501 |
raise ValueError("Invalid reference audio format")
|
| 502 |
|
| 503 |
+
# Print debug information
|
| 504 |
print(f"Content audio shape: {content_tensor.shape}, sample rate: {content_sr}")
|
| 505 |
print(f"Reference audio shape: {reference_tensor.shape}, sample rate: {reference_sr}")
|
| 506 |
|
| 507 |
+
# Save uploaded audio
|
| 508 |
torchaudio.save(temp_content_path, content_tensor, content_sr)
|
| 509 |
torchaudio.save(temp_reference_path, reference_tensor, reference_sr)
|
| 510 |
|
| 511 |
try:
|
| 512 |
+
# Get pipeline
|
| 513 |
pipeline = get_pipeline("timbre")
|
| 514 |
|
| 515 |
+
# Inference
|
| 516 |
gen_audio = pipeline.inference_fm(
|
| 517 |
src_wav_path=temp_content_path,
|
| 518 |
timbre_ref_wav_path=temp_reference_path,
|
| 519 |
flow_matching_steps=32,
|
| 520 |
)
|
| 521 |
|
| 522 |
+
# Check if generated audio is numerical anomaly
|
| 523 |
if torch.isnan(gen_audio).any() or torch.isinf(gen_audio).any():
|
| 524 |
print("Warning: Generated audio contains NaN or Inf values")
|
| 525 |
gen_audio = torch.nan_to_num(gen_audio, nan=0.0, posinf=0.95, neginf=-0.95)
|
| 526 |
|
| 527 |
print(f"Generated audio shape: {gen_audio.shape}, max: {torch.max(gen_audio)}, min: {torch.min(gen_audio)}")
|
| 528 |
|
| 529 |
+
# Save generated audio
|
| 530 |
save_audio(gen_audio, output_path=output_path)
|
| 531 |
|
| 532 |
return output_path
|
|
|
|
| 543 |
temp_timbre_path = "wav/temp_timbre.wav"
|
| 544 |
output_path = "wav/output_vevovoice.wav"
|
| 545 |
|
| 546 |
+
# Check and process audio data
|
| 547 |
if content_wav is None or style_reference_wav is None or timbre_reference_wav is None:
|
| 548 |
raise ValueError("Please upload all required audio files")
|
| 549 |
|
| 550 |
+
# Process content audio format
|
| 551 |
if isinstance(content_wav, tuple) and len(content_wav) == 2:
|
| 552 |
if isinstance(content_wav[0], np.ndarray):
|
| 553 |
content_data, content_sr = content_wav
|
| 554 |
else:
|
| 555 |
content_sr, content_data = content_wav
|
| 556 |
|
| 557 |
+
# Ensure single channel
|
| 558 |
if len(content_data.shape) > 1 and content_data.shape[1] > 1:
|
| 559 |
content_data = np.mean(content_data, axis=1)
|
| 560 |
|
| 561 |
+
# Resample to 24kHz
|
| 562 |
if content_sr != 24000:
|
| 563 |
content_tensor = torch.FloatTensor(content_data).unsqueeze(0)
|
| 564 |
content_tensor = torchaudio.functional.resample(content_tensor, content_sr, 24000)
|
|
|
|
| 566 |
else:
|
| 567 |
content_tensor = torch.FloatTensor(content_data).unsqueeze(0)
|
| 568 |
|
| 569 |
+
# Normalize volume
|
| 570 |
content_tensor = content_tensor / (torch.max(torch.abs(content_tensor)) + 1e-6) * 0.95
|
| 571 |
else:
|
| 572 |
raise ValueError("Invalid content audio format")
|
| 573 |
|
| 574 |
+
# Process style reference audio format
|
| 575 |
if isinstance(style_reference_wav, tuple) and len(style_reference_wav) == 2:
|
| 576 |
if isinstance(style_reference_wav[0], np.ndarray):
|
| 577 |
style_data, style_sr = style_reference_wav
|
| 578 |
else:
|
| 579 |
style_sr, style_data = style_reference_wav
|
| 580 |
|
| 581 |
+
# Ensure single channel
|
| 582 |
if len(style_data.shape) > 1 and style_data.shape[1] > 1:
|
| 583 |
style_data = np.mean(style_data, axis=1)
|
| 584 |
|
| 585 |
+
# Resample to 24kHz
|
| 586 |
if style_sr != 24000:
|
| 587 |
style_tensor = torch.FloatTensor(style_data).unsqueeze(0)
|
| 588 |
style_tensor = torchaudio.functional.resample(style_tensor, style_sr, 24000)
|
|
|
|
| 590 |
else:
|
| 591 |
style_tensor = torch.FloatTensor(style_data).unsqueeze(0)
|
| 592 |
|
| 593 |
+
# Normalize volume
|
| 594 |
style_tensor = style_tensor / (torch.max(torch.abs(style_tensor)) + 1e-6) * 0.95
|
| 595 |
else:
|
| 596 |
raise ValueError("Invalid style reference audio format")
|
| 597 |
|
| 598 |
+
# Process timbre reference audio format
|
| 599 |
if isinstance(timbre_reference_wav, tuple) and len(timbre_reference_wav) == 2:
|
| 600 |
if isinstance(timbre_reference_wav[0], np.ndarray):
|
| 601 |
timbre_data, timbre_sr = timbre_reference_wav
|
| 602 |
else:
|
| 603 |
timbre_sr, timbre_data = timbre_reference_wav
|
| 604 |
|
| 605 |
+
# Ensure single channel
|
| 606 |
if len(timbre_data.shape) > 1 and timbre_data.shape[1] > 1:
|
| 607 |
timbre_data = np.mean(timbre_data, axis=1)
|
| 608 |
|
| 609 |
+
# Resample to 24kHz
|
| 610 |
if timbre_sr != 24000:
|
| 611 |
timbre_tensor = torch.FloatTensor(timbre_data).unsqueeze(0)
|
| 612 |
timbre_tensor = torchaudio.functional.resample(timbre_tensor, timbre_sr, 24000)
|
|
|
|
| 614 |
else:
|
| 615 |
timbre_tensor = torch.FloatTensor(timbre_data).unsqueeze(0)
|
| 616 |
|
| 617 |
+
# Normalize volume
|
| 618 |
timbre_tensor = timbre_tensor / (torch.max(torch.abs(timbre_tensor)) + 1e-6) * 0.95
|
| 619 |
else:
|
| 620 |
raise ValueError("Invalid timbre reference audio format")
|
| 621 |
|
| 622 |
+
# Print debug information
|
| 623 |
print(f"Content audio shape: {content_tensor.shape}, sample rate: {content_sr}")
|
| 624 |
print(f"Style reference audio shape: {style_tensor.shape}, sample rate: {style_sr}")
|
| 625 |
print(f"Timbre reference audio shape: {timbre_tensor.shape}, sample rate: {timbre_sr}")
|
| 626 |
|
| 627 |
+
# Save uploaded audio
|
| 628 |
torchaudio.save(temp_content_path, content_tensor, content_sr)
|
| 629 |
torchaudio.save(temp_style_path, style_tensor, style_sr)
|
| 630 |
torchaudio.save(temp_timbre_path, timbre_tensor, timbre_sr)
|
| 631 |
|
| 632 |
try:
|
| 633 |
+
# Get pipeline
|
| 634 |
pipeline = get_pipeline("voice")
|
| 635 |
|
| 636 |
+
# Inference
|
| 637 |
gen_audio = pipeline.inference_ar_and_fm(
|
| 638 |
src_wav_path=temp_content_path,
|
| 639 |
src_text=None,
|
|
|
|
| 641 |
timbre_ref_wav_path=temp_timbre_path,
|
| 642 |
)
|
| 643 |
|
| 644 |
+
# Check if generated audio is numerical anomaly
|
| 645 |
if torch.isnan(gen_audio).any() or torch.isinf(gen_audio).any():
|
| 646 |
print("Warning: Generated audio contains NaN or Inf values")
|
| 647 |
gen_audio = torch.nan_to_num(gen_audio, nan=0.0, posinf=0.95, neginf=-0.95)
|
| 648 |
|
| 649 |
print(f"Generated audio shape: {gen_audio.shape}, max: {torch.max(gen_audio)}, min: {torch.min(gen_audio)}")
|
| 650 |
|
| 651 |
+
# Save generated audio
|
| 652 |
save_audio(gen_audio, output_path=output_path)
|
| 653 |
|
| 654 |
return output_path
|
|
|
|
| 664 |
temp_timbre_path = "wav/temp_timbre.wav"
|
| 665 |
output_path = "wav/output_vevotts.wav"
|
| 666 |
|
| 667 |
+
# Check and process audio data
|
| 668 |
if ref_wav is None:
|
| 669 |
raise ValueError("Please upload a reference audio file")
|
| 670 |
|
| 671 |
+
# Process reference audio format
|
| 672 |
if isinstance(ref_wav, tuple) and len(ref_wav) == 2:
|
| 673 |
if isinstance(ref_wav[0], np.ndarray):
|
| 674 |
ref_data, ref_sr = ref_wav
|
| 675 |
else:
|
| 676 |
ref_sr, ref_data = ref_wav
|
| 677 |
|
| 678 |
+
# Ensure single channel
|
| 679 |
if len(ref_data.shape) > 1 and ref_data.shape[1] > 1:
|
| 680 |
ref_data = np.mean(ref_data, axis=1)
|
| 681 |
|
| 682 |
+
# Resample to 24kHz
|
| 683 |
if ref_sr != 24000:
|
| 684 |
ref_tensor = torch.FloatTensor(ref_data).unsqueeze(0)
|
| 685 |
ref_tensor = torchaudio.functional.resample(ref_tensor, ref_sr, 24000)
|
|
|
|
| 687 |
else:
|
| 688 |
ref_tensor = torch.FloatTensor(ref_data).unsqueeze(0)
|
| 689 |
|
| 690 |
+
# Normalize volume
|
| 691 |
ref_tensor = ref_tensor / (torch.max(torch.abs(ref_tensor)) + 1e-6) * 0.95
|
| 692 |
else:
|
| 693 |
raise ValueError("Invalid reference audio format")
|
| 694 |
|
| 695 |
+
# Print debug information
|
| 696 |
print(f"Reference audio shape: {ref_tensor.shape}, sample rate: {ref_sr}")
|
| 697 |
if style_ref_text:
|
| 698 |
print(f"Style reference text: {style_ref_text}, language: {style_ref_text_language}")
|
| 699 |
|
| 700 |
+
# Save uploaded audio
|
| 701 |
torchaudio.save(temp_ref_path, ref_tensor, ref_sr)
|
| 702 |
|
| 703 |
if timbre_ref_wav is not None:
|
|
|
|
| 707 |
else:
|
| 708 |
timbre_sr, timbre_data = timbre_ref_wav
|
| 709 |
|
| 710 |
+
# Ensure single channel
|
| 711 |
if len(timbre_data.shape) > 1 and timbre_data.shape[1] > 1:
|
| 712 |
timbre_data = np.mean(timbre_data, axis=1)
|
| 713 |
|
| 714 |
+
# Resample to 24kHz
|
| 715 |
if timbre_sr != 24000:
|
| 716 |
timbre_tensor = torch.FloatTensor(timbre_data).unsqueeze(0)
|
| 717 |
timbre_tensor = torchaudio.functional.resample(timbre_tensor, timbre_sr, 24000)
|
|
|
|
| 719 |
else:
|
| 720 |
timbre_tensor = torch.FloatTensor(timbre_data).unsqueeze(0)
|
| 721 |
|
| 722 |
+
# Normalize volume
|
| 723 |
timbre_tensor = timbre_tensor / (torch.max(torch.abs(timbre_tensor)) + 1e-6) * 0.95
|
| 724 |
|
| 725 |
print(f"Timbre reference audio shape: {timbre_tensor.shape}, sample rate: {timbre_sr}")
|
|
|
|
| 730 |
temp_timbre_path = temp_ref_path
|
| 731 |
|
| 732 |
try:
|
| 733 |
+
# Get pipeline
|
| 734 |
pipeline = get_pipeline("tts")
|
| 735 |
|
| 736 |
+
# Inference
|
| 737 |
gen_audio = pipeline.inference_ar_and_fm(
|
| 738 |
src_wav_path=None,
|
| 739 |
src_text=text,
|
|
|
|
| 744 |
style_ref_wav_text_language=style_ref_text_language,
|
| 745 |
)
|
| 746 |
|
| 747 |
+
# Check if generated audio is numerical anomaly
|
| 748 |
if torch.isnan(gen_audio).any() or torch.isinf(gen_audio).any():
|
| 749 |
print("Warning: Generated audio contains NaN or Inf values")
|
| 750 |
gen_audio = torch.nan_to_num(gen_audio, nan=0.0, posinf=0.95, neginf=-0.95)
|
| 751 |
|
| 752 |
print(f"Generated audio shape: {gen_audio.shape}, max: {torch.max(gen_audio)}, min: {torch.min(gen_audio)}")
|
| 753 |
|
| 754 |
+
# Save generated audio
|
| 755 |
save_audio(gen_audio, output_path=output_path)
|
| 756 |
|
| 757 |
return output_path
|
|
|
|
| 761 |
traceback.print_exc()
|
| 762 |
raise e
|
| 763 |
|
| 764 |
+
# Create Gradio interface
|
| 765 |
with gr.Blocks(title="Vevo: Controllable Zero-Shot Voice Imitation with Self-Supervised Disentanglement") as demo:
|
| 766 |
gr.Markdown("# Vevo: Controllable Zero-Shot Voice Imitation with Self-Supervised Disentanglement")
|
| 767 |
+
# Add link tag line
|
| 768 |
with gr.Row(elem_id="links_row"):
|
| 769 |
gr.HTML("""
|
| 770 |
<div style="display: flex; justify-content: flex-start; gap: 8px; margin: 0 0; padding-left: 0px;">
|
|
|
|
| 850 |
For more information, visit the [Amphion project](https://github.com/open-mmlab/Amphion)
|
| 851 |
""")
|
| 852 |
|
| 853 |
+
# Launch application
|
| 854 |
demo.launch()
|