Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -37,7 +37,6 @@ hf_hub_download_local(repo_id="Kijai/WanVideo_comfy", filename="Wan22-Lightning/
|
|
| 37 |
print("Downloads complete.")
|
| 38 |
|
| 39 |
# --- Boilerplate code from the original script ---
|
| 40 |
-
|
| 41 |
def get_value_at_index(obj: Union[Sequence, Mapping], index: int) -> Any:
|
| 42 |
"""Returns the value at the given index of a sequence or mapping.
|
| 43 |
|
|
@@ -88,7 +87,6 @@ def add_comfyui_directory_to_sys_path() -> None:
|
|
| 88 |
"""
|
| 89 |
Add 'ComfyUI' to the sys.path
|
| 90 |
"""
|
| 91 |
-
# Use a more robust name to find the ComfyUI directory
|
| 92 |
comfyui_path = find_path("ComfyUI")
|
| 93 |
if comfyui_path is not None and os.path.isdir(comfyui_path):
|
| 94 |
sys.path.append(comfyui_path)
|
|
@@ -132,8 +130,6 @@ def import_custom_nodes() -> None:
|
|
| 132 |
|
| 133 |
|
| 134 |
# --- Model Loading and Caching ---
|
| 135 |
-
|
| 136 |
-
# Dictionary to hold all loaded models and node instances
|
| 137 |
MODELS_AND_NODES = {}
|
| 138 |
|
| 139 |
print("Setting up ComfyUI paths...")
|
|
@@ -215,12 +211,21 @@ print("All models loaded successfully!")
|
|
| 215 |
|
| 216 |
# --- Main Video Generation Logic ---
|
| 217 |
@spaces.GPU(duration=120)
|
| 218 |
-
def generate_video(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 219 |
"""
|
| 220 |
The main function to generate a video based on user inputs.
|
| 221 |
This function is called every time the user clicks the 'Generate' button.
|
| 222 |
"""
|
| 223 |
-
|
|
|
|
|
|
|
| 224 |
clip = MODELS_AND_NODES["clip"]
|
| 225 |
vae = MODELS_AND_NODES["vae"]
|
| 226 |
model_low_noise = MODELS_AND_NODES["model_low_noise"]
|
|
@@ -246,122 +251,127 @@ def generate_video(start_image_pil: Image.Image, end_image_pil: Image.Image, pro
|
|
| 246 |
start_image_path = start_file.name
|
| 247 |
end_image_path = end_file.name
|
| 248 |
|
| 249 |
-
|
| 250 |
-
|
| 251 |
-
|
| 252 |
-
|
| 253 |
-
|
| 254 |
-
|
| 255 |
-
|
| 256 |
-
|
| 257 |
-
end_image_loaded = loadimage.load_image(image=end_image_path)
|
| 258 |
-
|
| 259 |
-
clip_vision_encoded_start = clipvisionencode.encode(
|
| 260 |
-
crop="none", clip_vision=get_value_at_index(clip_vision, 0), image=get_value_at_index(start_image_loaded, 0)
|
| 261 |
-
)
|
| 262 |
-
clip_vision_encoded_end = clipvisionencode.encode(
|
| 263 |
-
crop="none", clip_vision=get_value_at_index(clip_vision, 0), image=get_value_at_index(end_image_loaded, 0)
|
| 264 |
-
)
|
| 265 |
-
|
| 266 |
-
progress(0.2, desc="Preparing initial latents...")
|
| 267 |
-
initial_latents = wanfirstlastframetovideo.EXECUTE_NORMALIZED(
|
| 268 |
-
width=480, height=480, length=33, batch_size=1,
|
| 269 |
-
positive=get_value_at_index(positive_conditioning, 0),
|
| 270 |
-
negative=get_value_at_index(negative_conditioning, 0),
|
| 271 |
-
vae=get_value_at_index(vae, 0),
|
| 272 |
-
clip_vision_start_image=get_value_at_index(clip_vision_encoded_start, 0),
|
| 273 |
-
clip_vision_end_image=get_value_at_index(clip_vision_encoded_end, 0),
|
| 274 |
-
start_image=get_value_at_index(start_image_loaded, 0),
|
| 275 |
-
end_image=get_value_at_index(end_image_loaded, 0),
|
| 276 |
-
)
|
| 277 |
-
|
| 278 |
-
progress(0.3, desc="Patching models...")
|
| 279 |
-
model_low_patched = modelsamplingsd3.patch(shift=8, model=get_value_at_index(model_low_noise, 0))
|
| 280 |
-
model_low_final = pathchsageattentionkj.patch(sage_attention="auto", model=get_value_at_index(model_low_patched, 0))
|
| 281 |
-
|
| 282 |
-
model_high_patched = modelsamplingsd3.patch(shift=8, model=get_value_at_index(model_high_noise, 0))
|
| 283 |
-
model_high_final = pathchsageattentionkj.patch(sage_attention="auto", model=get_value_at_index(model_high_patched, 0))
|
| 284 |
-
|
| 285 |
-
progress(0.5, desc="Running KSampler (Step 1/2)...")
|
| 286 |
-
latent_step1 = ksampleradvanced.sample(
|
| 287 |
-
add_noise="enable", noise_seed=random.randint(1, 2**64), steps=8, cfg=1,
|
| 288 |
-
sampler_name="euler", scheduler="simple", start_at_step=0, end_at_step=4,
|
| 289 |
-
return_with_leftover_noise="enable", model=get_value_at_index(model_high_final, 0),
|
| 290 |
-
positive=get_value_at_index(initial_latents, 0),
|
| 291 |
-
negative=get_value_at_index(initial_latents, 1),
|
| 292 |
-
latent_image=get_value_at_index(initial_latents, 2),
|
| 293 |
-
)
|
| 294 |
-
|
| 295 |
-
progress(0.7, desc="Running KSampler (Step 2/2)...")
|
| 296 |
-
latent_step2 = ksampleradvanced.sample(
|
| 297 |
-
add_noise="disable", noise_seed=random.randint(1, 2**64), steps=8, cfg=1,
|
| 298 |
-
sampler_name="euler", scheduler="simple", start_at_step=4, end_at_step=10000,
|
| 299 |
-
return_with_leftover_noise="disable", model=get_value_at_index(model_low_final, 0),
|
| 300 |
-
positive=get_value_at_index(initial_latents, 0),
|
| 301 |
-
negative=get_value_at_index(initial_latents, 1),
|
| 302 |
-
latent_image=get_value_at_index(latent_step1, 0),
|
| 303 |
-
)
|
| 304 |
-
|
| 305 |
-
progress(0.8, desc="Decoding VAE...")
|
| 306 |
-
decoded_images = vaedecode.decode(samples=get_value_at_index(latent_step2, 0), vae=get_value_at_index(vae, 0))
|
| 307 |
-
|
| 308 |
-
progress(0.9, desc="Creating and saving video...")
|
| 309 |
-
video_data = createvideo.create_video(fps=16, images=get_value_at_index(decoded_images, 0))
|
| 310 |
-
|
| 311 |
-
# Save the video to ComfyUI's output directory
|
| 312 |
-
save_result = savevideo.save_video(
|
| 313 |
-
filename_prefix="GradioVideo", format="mp4", codec="h264",
|
| 314 |
-
video=get_value_at_index(video_data, 0),
|
| 315 |
-
)
|
| 316 |
-
|
| 317 |
-
progress(1.0, desc="Done!")
|
| 318 |
-
return f"output/{save_result['ui']['images'][0]['filename']}"
|
| 319 |
-
|
| 320 |
-
finally:
|
| 321 |
-
# Clean up the temporary image files
|
| 322 |
-
os.unlink(start_image_path)
|
| 323 |
-
os.unlink(end_image_path)
|
| 324 |
-
|
| 325 |
-
# --- Gradio UI ---
|
| 326 |
-
|
| 327 |
-
def create_gradio_app():
|
| 328 |
-
with gr.Blocks(theme=gr.themes.Soft()) as app:
|
| 329 |
-
gr.Markdown("# Image-to-Video Generation App")
|
| 330 |
-
gr.Markdown("Upload a start and end frame, provide a prompt, and let the AI generate a video transitioning between them.")
|
| 331 |
-
|
| 332 |
-
with gr.Row():
|
| 333 |
-
start_image = gr.Image(type="pil", label="Start Frame")
|
| 334 |
-
end_image = gr.Image(type="pil", label="End Frame")
|
| 335 |
|
| 336 |
-
|
| 337 |
-
|
| 338 |
-
|
| 339 |
-
|
|
|
|
| 340 |
)
|
| 341 |
-
|
| 342 |
-
generate_button = gr.Button("Generate Video", variant="primary")
|
| 343 |
-
|
| 344 |
-
output_video = gr.Video(label="Generated Video")
|
| 345 |
|
| 346 |
-
|
| 347 |
-
|
| 348 |
-
|
| 349 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 350 |
)
|
| 351 |
|
| 352 |
-
|
| 353 |
-
|
| 354 |
-
|
| 355 |
-
|
| 356 |
-
|
| 357 |
-
|
| 358 |
-
|
| 359 |
-
|
| 360 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 361 |
)
|
| 362 |
|
| 363 |
-
|
|
|
|
| 364 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 365 |
|
| 366 |
if __name__ == "__main__":
|
| 367 |
app = create_gradio_app()
|
|
|
|
| 37 |
print("Downloads complete.")
|
| 38 |
|
| 39 |
# --- Boilerplate code from the original script ---
|
|
|
|
| 40 |
def get_value_at_index(obj: Union[Sequence, Mapping], index: int) -> Any:
|
| 41 |
"""Returns the value at the given index of a sequence or mapping.
|
| 42 |
|
|
|
|
| 87 |
"""
|
| 88 |
Add 'ComfyUI' to the sys.path
|
| 89 |
"""
|
|
|
|
| 90 |
comfyui_path = find_path("ComfyUI")
|
| 91 |
if comfyui_path is not None and os.path.isdir(comfyui_path):
|
| 92 |
sys.path.append(comfyui_path)
|
|
|
|
| 130 |
|
| 131 |
|
| 132 |
# --- Model Loading and Caching ---
|
|
|
|
|
|
|
| 133 |
MODELS_AND_NODES = {}
|
| 134 |
|
| 135 |
print("Setting up ComfyUI paths...")
|
|
|
|
| 211 |
|
| 212 |
# --- Main Video Generation Logic ---
|
| 213 |
@spaces.GPU(duration=120)
|
| 214 |
+
def generate_video(
|
| 215 |
+
start_image_pil,
|
| 216 |
+
end_image_pil,
|
| 217 |
+
prompt,
|
| 218 |
+
negative_prompt="色调艳丽,过曝,静态,细节模糊不清,字幕,风格,作品,画作,画面,静止,整体发灰,最差质量,低质量,JPEG压缩残留,丑陋的,残缺的,多余的手指,画得不好的手部,画得不好的脸部,畸形的,毁容的,形态畸形的肢体,手指融合,静止不动的画面,杂乱的背景,三条腿,背景人很多,倒着走,过曝,",
|
| 219 |
+
duration=2,
|
| 220 |
+
progress=gr.Progress(track_tqdm=True)
|
| 221 |
+
):
|
| 222 |
"""
|
| 223 |
The main function to generate a video based on user inputs.
|
| 224 |
This function is called every time the user clicks the 'Generate' button.
|
| 225 |
"""
|
| 226 |
+
FPS = 16
|
| 227 |
+
num_frames = max(2, int(duration * FPS))
|
| 228 |
+
|
| 229 |
clip = MODELS_AND_NODES["clip"]
|
| 230 |
vae = MODELS_AND_NODES["vae"]
|
| 231 |
model_low_noise = MODELS_AND_NODES["model_low_noise"]
|
|
|
|
| 251 |
start_image_path = start_file.name
|
| 252 |
end_image_path = end_file.name
|
| 253 |
|
| 254 |
+
with torch.inference_mode():
|
| 255 |
+
progress(0.1, desc="Encoding text and images...")
|
| 256 |
+
# --- Workflow execution ---
|
| 257 |
+
positive_conditioning = cliptextencode.encode(text=prompt, clip=get_value_at_index(clip, 0))
|
| 258 |
+
negative_conditioning = cliptextencode.encode(text=negative_prompt, clip=get_value_at_index(clip, 0))
|
| 259 |
+
|
| 260 |
+
start_image_loaded = loadimage.load_image(image=start_image_path)
|
| 261 |
+
end_image_loaded = loadimage.load_image(image=end_image_path)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 262 |
|
| 263 |
+
clip_vision_encoded_start = clipvisionencode.encode(
|
| 264 |
+
crop="none", clip_vision=get_value_at_index(clip_vision, 0), image=get_value_at_index(start_image_loaded, 0)
|
| 265 |
+
)
|
| 266 |
+
clip_vision_encoded_end = clipvisionencode.encode(
|
| 267 |
+
crop="none", clip_vision=get_value_at_index(clip_vision, 0), image=get_value_at_index(end_image_loaded, 0)
|
| 268 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 269 |
|
| 270 |
+
progress(0.2, desc="Preparing initial latents...")
|
| 271 |
+
initial_latents = wanfirstlastframetovideo.EXECUTE_NORMALIZED(
|
| 272 |
+
width=480, height=480, length=num_frames, batch_size=1,
|
| 273 |
+
positive=get_value_at_index(positive_conditioning, 0),
|
| 274 |
+
negative=get_value_at_index(negative_conditioning, 0),
|
| 275 |
+
vae=get_value_at_index(vae, 0),
|
| 276 |
+
clip_vision_start_image=get_value_at_index(clip_vision_encoded_start, 0),
|
| 277 |
+
clip_vision_end_image=get_value_at_index(clip_vision_encoded_end, 0),
|
| 278 |
+
start_image=get_value_at_index(start_image_loaded, 0),
|
| 279 |
+
end_image=get_value_at_index(end_image_loaded, 0),
|
| 280 |
)
|
| 281 |
|
| 282 |
+
progress(0.3, desc="Patching models...")
|
| 283 |
+
model_low_patched = modelsamplingsd3.patch(shift=8, model=get_value_at_index(model_low_noise, 0))
|
| 284 |
+
model_low_final = pathchsageattentionkj.patch(sage_attention="auto", model=get_value_at_index(model_low_patched, 0))
|
| 285 |
+
|
| 286 |
+
model_high_patched = modelsamplingsd3.patch(shift=8, model=get_value_at_index(model_high_noise, 0))
|
| 287 |
+
model_high_final = pathchsageattentionkj.patch(sage_attention="auto", model=get_value_at_index(model_high_patched, 0))
|
| 288 |
+
|
| 289 |
+
progress(0.5, desc="Running KSampler (Step 1/2)...")
|
| 290 |
+
latent_step1 = ksampleradvanced.sample(
|
| 291 |
+
add_noise="enable", noise_seed=random.randint(1, 2**64), steps=8, cfg=1,
|
| 292 |
+
sampler_name="euler", scheduler="simple", start_at_step=0, end_at_step=4,
|
| 293 |
+
return_with_leftover_noise="enable", model=get_value_at_index(model_high_final, 0),
|
| 294 |
+
positive=get_value_at_index(initial_latents, 0),
|
| 295 |
+
negative=get_value_at_index(initial_latents, 1),
|
| 296 |
+
latent_image=get_value_at_index(initial_latents, 2),
|
| 297 |
+
)
|
| 298 |
+
|
| 299 |
+
progress(0.7, desc="Running KSampler (Step 2/2)...")
|
| 300 |
+
latent_step2 = ksampleradvanced.sample(
|
| 301 |
+
add_noise="disable", noise_seed=random.randint(1, 2**64), steps=8, cfg=1,
|
| 302 |
+
sampler_name="euler", scheduler="simple", start_at_step=4, end_at_step=10000,
|
| 303 |
+
return_with_leftover_noise="disable", model=get_value_at_index(model_low_final, 0),
|
| 304 |
+
positive=get_value_at_index(initial_latents, 0),
|
| 305 |
+
negative=get_value_at_index(initial_latents, 1),
|
| 306 |
+
latent_image=get_value_at_index(latent_step1, 0),
|
| 307 |
)
|
| 308 |
|
| 309 |
+
progress(0.8, desc="Decoding VAE...")
|
| 310 |
+
decoded_images = vaedecode.decode(samples=get_value_at_index(latent_step2, 0), vae=get_value_at_index(vae, 0))
|
| 311 |
|
| 312 |
+
progress(0.9, desc="Creating and saving video...")
|
| 313 |
+
video_data = createvideo.create_video(fps=FPS, images=get_value_at_index(decoded_images, 0))
|
| 314 |
+
|
| 315 |
+
# Save the video to ComfyUI's output directory
|
| 316 |
+
save_result = savevideo.save_video(
|
| 317 |
+
filename_prefix="GradioVideo", format="mp4", codec="h264",
|
| 318 |
+
video=get_value_at_index(video_data, 0),
|
| 319 |
+
)
|
| 320 |
+
|
| 321 |
+
progress(1.0, desc="Done!")
|
| 322 |
+
return f"output/{save_result['ui']['images'][0]['filename']}"
|
| 323 |
+
|
| 324 |
+
css = '''
|
| 325 |
+
.fillable{max-width: 980px !important}
|
| 326 |
+
.dark .progress-text {color: white}
|
| 327 |
+
'''
|
| 328 |
+
with gr.Blocks(theme=gr.themes.Citrus(), css=css) as app:
|
| 329 |
+
gr.Markdown("# Wan 2.2 First/Last Frame Video Fast")
|
| 330 |
+
gr.Markdown("Running the [Wan 2.2 First/Last Frame ComfyUI workflow](https://www.reddit.com/r/StableDiffusion/comments/1me4306/psa_wan_22_does_first_frame_last_frame_out_of_the/) on ZeroGPU")
|
| 331 |
+
with gr.Row():
|
| 332 |
+
with gr.Column():
|
| 333 |
+
with gr.Row():
|
| 334 |
+
start_image = gr.Image(type="pil", label="Start Frame")
|
| 335 |
+
end_image = gr.Image(type="pil", label="End Frame")
|
| 336 |
+
|
| 337 |
+
prompt = gr.Textbox(label="Prompt", info="Describe the transition between the two images", value="transition")
|
| 338 |
+
|
| 339 |
+
with gr.Accordion("Advanced Settings", open=False):
|
| 340 |
+
duration = gr.Slider(
|
| 341 |
+
minimum=1.0,
|
| 342 |
+
maximum=5.0,
|
| 343 |
+
value=2.0,
|
| 344 |
+
step=0.1,
|
| 345 |
+
label="Video Duration (seconds)",
|
| 346 |
+
info="Longer videos take longer to generate"
|
| 347 |
+
)
|
| 348 |
+
negative_prompt = gr.Textbox(
|
| 349 |
+
label="Negative Prompt",
|
| 350 |
+
value="色调艳丽,过曝,静态,细节模糊不清,字幕,风格,作品,画作,画面,静止,整体发灰,最差质量,低质量,JPEG压缩残留,丑陋的,残缺的,多余的手指,画得不好的手部,画得不好的脸部,畸形的,毁容的,形态畸形的肢体,手指融合,静止不动的画面,杂乱的背景,三条腿,背景人很多,倒着走,过曝,",
|
| 351 |
+
visible=False
|
| 352 |
+
)
|
| 353 |
+
|
| 354 |
+
generate_button = gr.Button("Generate Video", variant="primary")
|
| 355 |
+
|
| 356 |
+
with gr.Column():
|
| 357 |
+
output_video = gr.Video(label="Generated Video")
|
| 358 |
+
|
| 359 |
+
generate_button.click(
|
| 360 |
+
fn=generate_video,
|
| 361 |
+
inputs=[start_image, end_image, prompt, negative_prompt, duration],
|
| 362 |
+
outputs=output_video
|
| 363 |
+
)
|
| 364 |
+
|
| 365 |
+
gr.Examples(
|
| 366 |
+
examples=[
|
| 367 |
+
["poli_tower.png", "tower_takes_off.png", "the man turns"],
|
| 368 |
+
["capybara_zoomed.png", "capybara.webp", "a dramatic dolly zoom"],
|
| 369 |
+
],
|
| 370 |
+
inputs=[start_image, end_image, prompt],
|
| 371 |
+
outputs=output_video,
|
| 372 |
+
fn=generate_video,
|
| 373 |
+
cache_examples="lazy",
|
| 374 |
+
)
|
| 375 |
|
| 376 |
if __name__ == "__main__":
|
| 377 |
app = create_gradio_app()
|