Spaces:
Runtime error
Runtime error
swap comfyui to diffusers
Browse files
app.py
CHANGED
|
@@ -1,179 +1,126 @@
|
|
| 1 |
import os
|
| 2 |
-
|
| 3 |
-
|
| 4 |
-
import subprocess
|
| 5 |
-
import asyncio
|
| 6 |
-
import uuid
|
| 7 |
-
import random
|
| 8 |
-
import tempfile
|
| 9 |
-
from typing import Sequence, Mapping, Any, Union
|
| 10 |
|
|
|
|
|
|
|
| 11 |
import torch
|
|
|
|
|
|
|
|
|
|
| 12 |
import gradio as gr
|
|
|
|
|
|
|
| 13 |
from PIL import Image
|
| 14 |
-
|
| 15 |
-
import
|
| 16 |
-
|
| 17 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 18 |
|
| 19 |
-
|
| 20 |
-
"""Downloads a file from Hugging Face Hub and symlinks it to a local directory."""
|
| 21 |
-
downloaded_path = hf_hub_download(repo_id=repo_id, filename=filename, **kwargs)
|
| 22 |
-
os.makedirs(local_dir, exist_ok=True)
|
| 23 |
-
base_filename = os.path.basename(filename)
|
| 24 |
-
target_path = os.path.join(local_dir, base_filename)
|
| 25 |
-
|
| 26 |
-
# Remove existing symlink or file to avoid errors
|
| 27 |
-
if os.path.exists(target_path) or os.path.islink(target_path):
|
| 28 |
-
os.remove(target_path)
|
| 29 |
-
|
| 30 |
-
os.symlink(downloaded_path, target_path)
|
| 31 |
-
return target_path
|
| 32 |
-
|
| 33 |
-
print("Downloading models from Hugging Face Hub...")
|
| 34 |
-
hf_hub_download_local(repo_id="Comfy-Org/Wan_2.1_ComfyUI_repackaged", filename="split_files/text_encoders/umt5_xxl_fp8_e4m3fn_scaled.safetensors", local_dir="models/text_encoders")
|
| 35 |
-
hf_hub_download_local(repo_id="Comfy-Org/Wan_2.2_ComfyUI_Repackaged", filename="split_files/diffusion_models/wan2.2_i2v_low_noise_14B_fp8_scaled.safetensors", local_dir="models/unet")
|
| 36 |
-
hf_hub_download_local(repo_id="Comfy-Org/Wan_2.2_ComfyUI_Repackaged", filename="split_files/diffusion_models/wan2.2_i2v_high_noise_14B_fp8_scaled.safetensors", local_dir="models/unet")
|
| 37 |
-
hf_hub_download_local(repo_id="Comfy-Org/Wan_2.1_ComfyUI_repackaged", filename="split_files/vae/wan_2.1_vae.safetensors", local_dir="models/vae")
|
| 38 |
-
hf_hub_download_local(repo_id="Comfy-Org/Wan_2.1_ComfyUI_repackaged", filename="split_files/clip_vision/clip_vision_h.safetensors", local_dir="models/clip_vision")
|
| 39 |
-
hf_hub_download_local(repo_id="Kijai/WanVideo_comfy", filename="Wan22-Lightning/Wan2.2-Lightning_I2V-A14B-4steps-lora_HIGH_fp16.safetensors", local_dir="models/loras")
|
| 40 |
-
hf_hub_download_local(repo_id="Kijai/WanVideo_comfy", filename="Wan22-Lightning/Wan2.2-Lightning_I2V-A14B-4steps-lora_LOW_fp16.safetensors", local_dir="models/loras")
|
| 41 |
-
print("Downloads complete.")
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
# --- 2. ComfyUI Backend Initialization ---
|
| 45 |
-
|
| 46 |
-
def find_path(name: str, path: str = None) -> str:
|
| 47 |
-
"""Recursively finds a directory with a given name."""
|
| 48 |
-
if path is None: path = os.getcwd()
|
| 49 |
-
if name in os.listdir(path): return os.path.join(path, name)
|
| 50 |
-
parent_directory = os.path.dirname(path)
|
| 51 |
-
return find_path(name, parent_directory) if parent_directory != path else None
|
| 52 |
-
|
| 53 |
-
def add_comfyui_directory_to_sys_path() -> None:
|
| 54 |
-
"""Adds the ComfyUI directory to sys.path for imports."""
|
| 55 |
-
comfyui_path = find_path("ComfyUI")
|
| 56 |
-
if comfyui_path and os.path.isdir(comfyui_path):
|
| 57 |
-
sys.path.append(comfyui_path)
|
| 58 |
-
print(f"'{comfyui_path}' added to sys.path")
|
| 59 |
-
|
| 60 |
-
def add_extra_model_paths() -> None:
|
| 61 |
-
"""Initializes ComfyUI's folder_paths with custom paths."""
|
| 62 |
-
from main import apply_custom_paths
|
| 63 |
-
apply_custom_paths()
|
| 64 |
-
|
| 65 |
-
def import_custom_nodes() -> None:
|
| 66 |
-
"""Initializes all ComfyUI custom nodes."""
|
| 67 |
-
import nodes
|
| 68 |
-
loop = asyncio.new_event_loop()
|
| 69 |
-
asyncio.set_event_loop(loop)
|
| 70 |
-
loop.run_until_complete(nodes.init_extra_nodes(init_custom_nodes=True))
|
| 71 |
-
|
| 72 |
-
print("Setting up ComfyUI paths and nodes...")
|
| 73 |
-
add_comfyui_directory_to_sys_path()
|
| 74 |
-
add_extra_model_paths()
|
| 75 |
-
import_custom_nodes()
|
| 76 |
-
print("ComfyUI setup complete.")
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
# --- 3. Global Model & Node Loading and Patching ---
|
| 80 |
-
|
| 81 |
-
from nodes import NODE_CLASS_MAPPINGS
|
| 82 |
-
import folder_paths
|
| 83 |
-
from comfy import model_management
|
| 84 |
-
|
| 85 |
-
# Set VRAM mode to HIGH to prevent models from being offloaded from GPU after use.
|
| 86 |
-
# model_management.vram_state = model_management.VRAMState.HIGH_VRAM
|
| 87 |
-
|
| 88 |
-
MODELS_AND_NODES = {}
|
| 89 |
-
|
| 90 |
-
def get_value_at_index(obj: Union[Sequence, Mapping], index: int) -> Any:
|
| 91 |
-
"""Helper to safely access outputs from ComfyUI nodes, which are often tuples."""
|
| 92 |
-
try:
|
| 93 |
-
return obj[index]
|
| 94 |
-
except (KeyError, TypeError):
|
| 95 |
-
# Fallback for custom nodes that might return a dictionary with a 'result' key
|
| 96 |
-
if isinstance(obj, Mapping) and "result" in obj:
|
| 97 |
-
return obj["result"][index]
|
| 98 |
-
raise
|
| 99 |
-
|
| 100 |
-
print("Loading models and instantiating nodes into memory. This may take a few minutes...")
|
| 101 |
-
|
| 102 |
-
# Instantiate Node Classes that will be used for loading and patching
|
| 103 |
-
cliploader = NODE_CLASS_MAPPINGS["CLIPLoader"]()
|
| 104 |
-
unetloader = NODE_CLASS_MAPPINGS["UNETLoader"]()
|
| 105 |
-
vaeloader = NODE_CLASS_MAPPINGS["VAELoader"]()
|
| 106 |
-
clipvisionloader = NODE_CLASS_MAPPINGS["CLIPVisionLoader"]()
|
| 107 |
-
loraloadermodelonly = NODE_CLASS_MAPPINGS["LoraLoaderModelOnly"]()
|
| 108 |
-
modelsamplingsd3 = NODE_CLASS_MAPPINGS["ModelSamplingSD3"]()
|
| 109 |
-
pathchsageattentionkj = NODE_CLASS_MAPPINGS["PathchSageAttentionKJ"]()
|
| 110 |
-
|
| 111 |
-
# Load base models into CPU RAM initially
|
| 112 |
-
MODELS_AND_NODES["clip"] = cliploader.load_clip(clip_name="umt5_xxl_fp8_e4m3fn_scaled.safetensors", type="wan")
|
| 113 |
-
unet_low_noise = unetloader.load_unet(unet_name="wan2.2_i2v_low_noise_14B_fp8_scaled.safetensors", weight_dtype="default")
|
| 114 |
-
unet_high_noise = unetloader.load_unet(unet_name="wan2.2_i2v_high_noise_14B_fp8_scaled.safetensors", weight_dtype="default")
|
| 115 |
-
MODELS_AND_NODES["vae"] = vaeloader.load_vae(vae_name="wan_2.1_vae.safetensors")
|
| 116 |
-
MODELS_AND_NODES["clip_vision"] = clipvisionloader.load_clip(clip_name="clip_vision_h.safetensors")
|
| 117 |
-
|
| 118 |
-
# Chain all patching operations together for the final models
|
| 119 |
-
print("Applying all patches to models...")
|
| 120 |
-
|
| 121 |
-
# --- Low Noise Model Chain ---
|
| 122 |
-
model_low_with_lora = loraloadermodelonly.load_lora_model_only(
|
| 123 |
-
lora_name="Wan2.2-Lightning_I2V-A14B-4steps-lora_LOW_fp16.safetensors",
|
| 124 |
-
strength_model=0.8, model=get_value_at_index(unet_low_noise, 0))
|
| 125 |
-
model_low_patched = modelsamplingsd3.patch(shift=8, model=get_value_at_index(model_low_with_lora, 0))
|
| 126 |
-
MODELS_AND_NODES["model_low_noise"] = pathchsageattentionkj.patch(sage_attention="auto", model=get_value_at_index(model_low_patched, 0))
|
| 127 |
-
|
| 128 |
-
# --- High Noise Model Chain ---
|
| 129 |
-
model_high_with_lora = loraloadermodelonly.load_lora_model_only(
|
| 130 |
-
lora_name="Wan2.2-Lightning_I2V-A14B-4steps-lora_HIGH_fp16.safetensors",
|
| 131 |
-
strength_model=0.8, model=get_value_at_index(unet_high_noise, 0))
|
| 132 |
-
model_high_patched = modelsamplingsd3.patch(shift=8, model=get_value_at_index(model_high_with_lora, 0))
|
| 133 |
-
MODELS_AND_NODES["model_high_noise"] = pathchsageattentionkj.patch(sage_attention="auto", model=get_value_at_index(model_high_patched, 0))
|
| 134 |
-
|
| 135 |
-
# Instantiate all other node classes ONCE and store them
|
| 136 |
-
MODELS_AND_NODES["CLIPTextEncode"] = NODE_CLASS_MAPPINGS["CLIPTextEncode"]()
|
| 137 |
-
MODELS_AND_NODES["LoadImage"] = NODE_CLASS_MAPPINGS["LoadImage"]()
|
| 138 |
-
MODELS_AND_NODES["CLIPVisionEncode"] = NODE_CLASS_MAPPINGS["CLIPVisionEncode"]()
|
| 139 |
-
MODELS_AND_NODES["WanFirstLastFrameToVideo"] = NODE_CLASS_MAPPINGS["WanFirstLastFrameToVideo"]()
|
| 140 |
-
MODELS_AND_NODES["KSamplerAdvanced"] = NODE_CLASS_MAPPINGS["KSamplerAdvanced"]()
|
| 141 |
-
MODELS_AND_NODES["VAEDecode"] = NODE_CLASS_MAPPINGS["VAEDecode"]()
|
| 142 |
-
MODELS_AND_NODES["CreateVideo"] = NODE_CLASS_MAPPINGS["CreateVideo"]()
|
| 143 |
-
MODELS_AND_NODES["SaveVideo"] = NODE_CLASS_MAPPINGS["SaveVideo"]()
|
| 144 |
-
|
| 145 |
-
# Move all final, fully-patched models to the GPU
|
| 146 |
-
print("Moving final models to GPU...")
|
| 147 |
-
model_loaders_final = [
|
| 148 |
-
MODELS_AND_NODES["clip"],
|
| 149 |
-
# MODELS_AND_NODES["vae"],
|
| 150 |
-
MODELS_AND_NODES["model_low_noise"],
|
| 151 |
-
MODELS_AND_NODES["model_high_noise"],
|
| 152 |
-
MODELS_AND_NODES["clip_vision"],
|
| 153 |
-
]
|
| 154 |
-
model_management.load_models_gpu([
|
| 155 |
-
loader[0].patcher if hasattr(loader[0], 'patcher') else loader[0] for loader in model_loaders_final
|
| 156 |
-
], force_patch_weights=True) # force_patch_weights permanently merges the LoRA
|
| 157 |
-
|
| 158 |
-
print("All models loaded, patched, and on GPU. Gradio app is ready.")
|
| 159 |
-
|
| 160 |
-
|
| 161 |
-
# --- 4. Application Logic and Gradio Interface ---
|
| 162 |
-
|
| 163 |
-
def calculate_video_dimensions(width, height, max_size=832, min_size=480):
|
| 164 |
-
"""Calculates video dimensions, ensuring they are multiples of 16."""
|
| 165 |
if width == height:
|
| 166 |
-
return
|
|
|
|
|
|
|
| 167 |
aspect_ratio = width / height
|
| 168 |
-
|
| 169 |
-
|
| 170 |
-
|
| 171 |
-
|
| 172 |
-
|
| 173 |
-
|
| 174 |
-
|
| 175 |
-
|
| 176 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 177 |
|
| 178 |
def resize_and_crop_to_match(target_image, reference_image):
|
| 179 |
"""Resizes and center-crops the target image to match the reference image's dimensions."""
|
|
@@ -190,125 +137,64 @@ def generate_video(
|
|
| 190 |
start_image_pil,
|
| 191 |
end_image_pil,
|
| 192 |
prompt,
|
| 193 |
-
negative_prompt
|
| 194 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 195 |
progress=gr.Progress(track_tqdm=True)
|
| 196 |
):
|
| 197 |
"""
|
| 198 |
-
Generates a video by interpolating between a start and end image, guided by a text prompt
|
| 199 |
-
|
| 200 |
"""
|
| 201 |
-
|
| 202 |
-
|
| 203 |
-
|
| 204 |
-
|
| 205 |
-
|
| 206 |
-
|
| 207 |
-
|
| 208 |
-
model_high_final = MODELS_AND_NODES["model_high_noise"]
|
| 209 |
-
clip_vision = MODELS_AND_NODES["clip_vision"]
|
| 210 |
-
|
| 211 |
-
cliptextencode = MODELS_AND_NODES["CLIPTextEncode"]
|
| 212 |
-
loadimage = MODELS_AND_NODES["LoadImage"]
|
| 213 |
-
clipvisionencode = MODELS_AND_NODES["CLIPVisionEncode"]
|
| 214 |
-
wanfirstlastframetovideo = MODELS_AND_NODES["WanFirstLastFrameToVideo"]
|
| 215 |
-
ksampleradvanced = MODELS_AND_NODES["KSamplerAdvanced"]
|
| 216 |
-
vaedecode = MODELS_AND_NODES["VAEDecode"]
|
| 217 |
-
createvideo = MODELS_AND_NODES["CreateVideo"]
|
| 218 |
-
savevideo = MODELS_AND_NODES["SaveVideo"]
|
| 219 |
-
|
| 220 |
-
# --- 2. Image Preprocessing for the Current Run ---
|
| 221 |
-
print("Preprocessing images with Pillow...")
|
| 222 |
-
processed_start_image = start_image_pil.copy()
|
| 223 |
-
processed_end_image = resize_and_crop_to_match(end_image_pil, start_image_pil)
|
| 224 |
-
video_width, video_height = calculate_video_dimensions(processed_start_image.width, processed_start_image.height)
|
| 225 |
-
|
| 226 |
-
# Save processed images to temporary files for the LoadImage node
|
| 227 |
-
temp_dir = "input" # ComfyUI's default input directory
|
| 228 |
-
os.makedirs(temp_dir, exist_ok=True)
|
| 229 |
|
| 230 |
-
|
| 231 |
-
|
| 232 |
-
processed_start_image.save(start_file.name)
|
| 233 |
-
processed_end_image.save(end_file.name)
|
| 234 |
-
start_image_path = os.path.basename(start_file.name)
|
| 235 |
-
end_image_path = os.path.basename(end_file.name)
|
| 236 |
-
print(f"Images resized to {video_width}x{video_height} and saved temporarily.")
|
| 237 |
|
| 238 |
-
|
| 239 |
-
|
| 240 |
-
|
| 241 |
-
|
| 242 |
-
|
| 243 |
-
|
| 244 |
-
|
| 245 |
-
|
| 246 |
-
|
| 247 |
-
|
| 248 |
-
|
| 249 |
-
|
| 250 |
-
|
| 251 |
-
|
| 252 |
-
|
| 253 |
-
|
| 254 |
-
|
| 255 |
-
|
| 256 |
-
|
| 257 |
-
|
| 258 |
-
|
| 259 |
-
|
| 260 |
-
|
| 261 |
-
|
| 262 |
-
|
| 263 |
-
|
| 264 |
-
|
| 265 |
-
|
| 266 |
-
|
| 267 |
-
|
| 268 |
-
|
| 269 |
-
|
| 270 |
-
add_noise="enable", noise_seed=random.randint(1, 2**64), steps=8, cfg=1,
|
| 271 |
-
sampler_name="euler", scheduler="simple", start_at_step=0, end_at_step=4,
|
| 272 |
-
return_with_leftover_noise="enable", model=get_value_at_index(model_high_final, 0),
|
| 273 |
-
positive=ksampler_positive,
|
| 274 |
-
negative=ksampler_negative,
|
| 275 |
-
latent_image=ksampler_latent,
|
| 276 |
-
)
|
| 277 |
-
|
| 278 |
-
progress(0.7, desc="Denoising (Step 2/2)...")
|
| 279 |
-
latent_step2 = ksampleradvanced.sample(
|
| 280 |
-
add_noise="disable", noise_seed=random.randint(1, 2**64), steps=8, cfg=1,
|
| 281 |
-
sampler_name="euler", scheduler="simple", start_at_step=4, end_at_step=10000,
|
| 282 |
-
return_with_leftover_noise="disable", model=get_value_at_index(model_low_final, 0),
|
| 283 |
-
positive=ksampler_positive,
|
| 284 |
-
negative=ksampler_negative,
|
| 285 |
-
latent_image=get_value_at_index(latent_step1, 0),
|
| 286 |
-
)
|
| 287 |
-
|
| 288 |
-
progress(0.8, desc="Decoding VAE...")
|
| 289 |
-
decoded_images = vaedecode.decode(samples=get_value_at_index(latent_step2, 0), vae=get_value_at_index(vae, 0))
|
| 290 |
-
|
| 291 |
-
progress(0.9, desc="Creating and saving video...")
|
| 292 |
-
video_data = createvideo.create_video(fps=FPS, images=get_value_at_index(decoded_images, 0))
|
| 293 |
-
|
| 294 |
-
# Save the video to ComfyUI's default output directory
|
| 295 |
-
save_result = savevideo.save_video(
|
| 296 |
-
filename_prefix="GradioVideo", format="mp4", codec="h264",
|
| 297 |
-
video=get_value_at_index(video_data, 0),
|
| 298 |
-
)
|
| 299 |
-
|
| 300 |
-
progress(1.0, desc="Done!")
|
| 301 |
-
|
| 302 |
-
# --- 4. Cleanup and Return ---
|
| 303 |
-
try:
|
| 304 |
-
os.remove(start_file.name)
|
| 305 |
-
os.remove(end_file.name)
|
| 306 |
-
except Exception as e:
|
| 307 |
-
print(f"Error cleaning up temporary files: {e}")
|
| 308 |
-
|
| 309 |
-
# Gradio video component expects a filepath relative to the root of the app
|
| 310 |
-
return f"output/{save_result['ui']['images'][0]['filename']}"
|
| 311 |
|
|
|
|
| 312 |
|
| 313 |
css = '''
|
| 314 |
.fillable{max-width: 1100px !important}
|
|
@@ -316,46 +202,59 @@ css = '''
|
|
| 316 |
'''
|
| 317 |
with gr.Blocks(theme=gr.themes.Citrus(), css=css) as app:
|
| 318 |
gr.Markdown("# Wan 2.2 First/Last Frame Video Fast")
|
| 319 |
-
gr.Markdown("Running the [Wan 2.2 First/Last Frame
|
| 320 |
-
|
| 321 |
with gr.Row():
|
| 322 |
with gr.Column():
|
| 323 |
with gr.Group():
|
| 324 |
with gr.Row():
|
| 325 |
-
start_image = gr.Image(type="pil", label="Start Frame")
|
| 326 |
-
end_image = gr.Image(type="pil", label="End Frame")
|
| 327 |
-
|
| 328 |
prompt = gr.Textbox(label="Prompt", info="Describe the transition between the two images")
|
| 329 |
-
|
| 330 |
-
with gr.Accordion("Advanced Settings", open=False
|
| 331 |
-
|
| 332 |
-
|
| 333 |
-
|
| 334 |
-
|
| 335 |
-
|
| 336 |
-
)
|
| 337 |
-
|
| 338 |
-
label="
|
| 339 |
-
|
| 340 |
-
visible=False
|
| 341 |
-
)
|
| 342 |
-
|
| 343 |
generate_button = gr.Button("Generate Video", variant="primary")
|
| 344 |
-
|
| 345 |
with gr.Column():
|
| 346 |
output_video = gr.Video(label="Generated Video", autoplay=True)
|
| 347 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 348 |
generate_button.click(
|
| 349 |
fn=generate_video,
|
| 350 |
-
inputs=
|
| 351 |
-
outputs=
|
| 352 |
)
|
| 353 |
|
| 354 |
gr.Examples(
|
| 355 |
examples=[
|
| 356 |
["poli_tower.png", "tower_takes_off.png", "the man turns around"],
|
| 357 |
["ugly_sonic.jpeg", "squatting_sonic.png", "the character dodges the missiles"],
|
| 358 |
-
["capyabara_zoomed.png", "
|
| 359 |
],
|
| 360 |
inputs=[start_image, end_image, prompt],
|
| 361 |
outputs=output_video,
|
|
|
|
| 1 |
import os
|
| 2 |
+
# PyTorch 2.8 (temporary hack)
|
| 3 |
+
os.system('pip install --upgrade --pre --extra-index-url https://download.pytorch.org/whl/nightly/cu126 "torch<2.9" spaces')
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 4 |
|
| 5 |
+
# --- 1. Model Download and Setup (Diffusers Backend) ---
|
| 6 |
+
import spaces
|
| 7 |
import torch
|
| 8 |
+
from diffusers.pipelines.wan.pipeline_wan_i2v import WanImageToVideoPipeline
|
| 9 |
+
from diffusers.models.transformers.transformer_wan import WanTransformer3DModel
|
| 10 |
+
from diffusers.utils.export_utils import export_to_video
|
| 11 |
import gradio as gr
|
| 12 |
+
import tempfile
|
| 13 |
+
import numpy as np
|
| 14 |
from PIL import Image
|
| 15 |
+
import random
|
| 16 |
+
import gc
|
| 17 |
+
|
| 18 |
+
# Import the optimization function from the separate file
|
| 19 |
+
from optimization import optimize_pipeline_
|
| 20 |
+
|
| 21 |
+
# --- Constants and Model Loading ---
|
| 22 |
+
MODEL_ID = "Wan-AI/Wan2.2-I2V-A14B-Diffusers"
|
| 23 |
+
|
| 24 |
+
# --- NEW: Flexible Dimension Constants ---
|
| 25 |
+
MAX_DIMENSION = 832
|
| 26 |
+
MIN_DIMENSION = 480
|
| 27 |
+
DIMENSION_MULTIPLE = 16
|
| 28 |
+
SQUARE_SIZE = 480
|
| 29 |
+
|
| 30 |
+
MAX_SEED = np.iinfo(np.int32).max
|
| 31 |
+
|
| 32 |
+
FIXED_FPS = 16
|
| 33 |
+
MIN_FRAMES_MODEL = 8
|
| 34 |
+
MAX_FRAMES_MODEL = 81
|
| 35 |
+
|
| 36 |
+
MIN_DURATION = round(MIN_FRAMES_MODEL/FIXED_FPS, 1)
|
| 37 |
+
MAX_DURATION = round(MAX_FRAMES_MODEL/FIXED_FPS, 1)
|
| 38 |
+
|
| 39 |
+
default_negative_prompt = "色调艳丽,过曝,静态,细节模糊不清,字幕,风格,作品,画作,画面,静止,整体发灰,最差质量,低质量,JPEG压缩残留,丑陋的,残缺的,多余的手指,画得不好的手部,画得不好的脸部,畸形的,毁容的,形态畸形的肢体,手指融合,静止不动的画面,杂乱的背景,三条腿,背景人很多,倒着走,过曝,"
|
| 40 |
+
|
| 41 |
+
print("Loading models into memory. This may take a few minutes...")
|
| 42 |
+
|
| 43 |
+
pipe = WanImageToVideoPipeline.from_pretrained(
|
| 44 |
+
MODEL_ID,
|
| 45 |
+
transformer=WanTransformer3DModel.from_pretrained('cbensimon/Wan2.2-I2V-A14B-bf16-Diffusers',
|
| 46 |
+
subfolder='transformer',
|
| 47 |
+
torch_dtype=torch.bfloat16,
|
| 48 |
+
device_map='cuda',
|
| 49 |
+
),
|
| 50 |
+
transformer_2=WanTransformer3DModel.from_pretrained('cbensimon/Wan2.2-I2V-A14B-bf16-Diffusers',
|
| 51 |
+
subfolder='transformer_2',
|
| 52 |
+
torch_dtype=torch.bfloat16,
|
| 53 |
+
device_map='cuda',
|
| 54 |
+
),
|
| 55 |
+
torch_dtype=torch.bfloat16,
|
| 56 |
+
).to('cuda')
|
| 57 |
+
|
| 58 |
+
print("Optimizing pipeline...")
|
| 59 |
+
for i in range(3):
|
| 60 |
+
gc.collect()
|
| 61 |
+
torch.cuda.synchronize()
|
| 62 |
+
torch.cuda.empty_cache()
|
| 63 |
+
|
| 64 |
+
# Calling the imported optimization function with a placeholder image for compilation tracing
|
| 65 |
+
optimize_pipeline_(pipe,
|
| 66 |
+
image=Image.new('RGB', (MAX_DIMENSION, MIN_DIMENSION)), # Use representative dims
|
| 67 |
+
prompt='prompt',
|
| 68 |
+
height=MIN_DIMENSION,
|
| 69 |
+
width=MAX_DIMENSION,
|
| 70 |
+
num_frames=MAX_FRAMES_MODEL,
|
| 71 |
+
)
|
| 72 |
+
print("All models loaded and optimized. Gradio app is ready.")
|
| 73 |
+
|
| 74 |
+
|
| 75 |
+
# --- 2. Image Processing and Application Logic ---
|
| 76 |
+
|
| 77 |
+
def process_image_for_video(image: Image.Image) -> Image.Image:
|
| 78 |
+
"""
|
| 79 |
+
Resizes an image based on the following rules for video generation:
|
| 80 |
+
1. The longest side will be scaled down to MAX_DIMENSION if it's larger.
|
| 81 |
+
2. The shortest side will be scaled up to MIN_DIMENSION if it's smaller.
|
| 82 |
+
3. The final dimensions will be rounded to the nearest multiple of DIMENSION_MULTIPLE.
|
| 83 |
+
4. Square images are resized to a fixed SQUARE_SIZE.
|
| 84 |
+
The aspect ratio is preserved as closely as possible.
|
| 85 |
+
"""
|
| 86 |
+
width, height = image.size
|
| 87 |
|
| 88 |
+
# Rule 4: Handle square images
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 89 |
if width == height:
|
| 90 |
+
return image.resize((SQUARE_SIZE, SQUARE_SIZE), Image.Resampling.LANCZOS)
|
| 91 |
+
|
| 92 |
+
# Determine target dimensions while preserving aspect ratio
|
| 93 |
aspect_ratio = width / height
|
| 94 |
+
new_width, new_height = width, height
|
| 95 |
+
|
| 96 |
+
# Rule 1: Scale down if too large
|
| 97 |
+
if new_width > MAX_DIMENSION or new_height > MAX_DIMENSION:
|
| 98 |
+
if aspect_ratio > 1: # Landscape
|
| 99 |
+
scale = MAX_DIMENSION / new_width
|
| 100 |
+
else: # Portrait
|
| 101 |
+
scale = MAX_DIMENSION / new_height
|
| 102 |
+
new_width *= scale
|
| 103 |
+
new_height *= scale
|
| 104 |
+
|
| 105 |
+
# Rule 2: Scale up if too small
|
| 106 |
+
if new_width < MIN_DIMENSION or new_height < MIN_DIMENSION:
|
| 107 |
+
if aspect_ratio > 1: # Landscape
|
| 108 |
+
scale = MIN_DIMENSION / new_height
|
| 109 |
+
else: # Portrait
|
| 110 |
+
scale = MIN_DIMENSION / new_width
|
| 111 |
+
new_width *= scale
|
| 112 |
+
new_height *= scale
|
| 113 |
+
|
| 114 |
+
# Rule 3: Round to the nearest multiple of DIMENSION_MULTIPLE
|
| 115 |
+
final_width = int(round(new_width / DIMENSION_MULTIPLE) * DIMENSION_MULTIPLE)
|
| 116 |
+
final_height = int(round(new_height / DIMENSION_MULTIPLE) * DIMENSION_MULTIPLE)
|
| 117 |
+
|
| 118 |
+
# Ensure final dimensions are at least the minimum
|
| 119 |
+
final_width = max(final_width, MIN_DIMENSION if aspect_ratio < 1 else SQUARE_SIZE)
|
| 120 |
+
final_height = max(final_height, MIN_DIMENSION if aspect_ratio > 1 else SQUARE_SIZE)
|
| 121 |
+
|
| 122 |
+
|
| 123 |
+
return image.resize((final_width, final_height), Image.Resampling.LANCZOS)
|
| 124 |
|
| 125 |
def resize_and_crop_to_match(target_image, reference_image):
|
| 126 |
"""Resizes and center-crops the target image to match the reference image's dimensions."""
|
|
|
|
| 137 |
start_image_pil,
|
| 138 |
end_image_pil,
|
| 139 |
prompt,
|
| 140 |
+
negative_prompt,
|
| 141 |
+
duration_seconds,
|
| 142 |
+
steps,
|
| 143 |
+
guidance_scale,
|
| 144 |
+
guidance_scale_2,
|
| 145 |
+
seed,
|
| 146 |
+
randomize_seed,
|
| 147 |
progress=gr.Progress(track_tqdm=True)
|
| 148 |
):
|
| 149 |
"""
|
| 150 |
+
Generates a video by interpolating between a start and end image, guided by a text prompt,
|
| 151 |
+
using the diffusers Wan2.2 pipeline.
|
| 152 |
"""
|
| 153 |
+
if start_image_pil is None or end_image_pil is None:
|
| 154 |
+
raise gr.Error("Please upload both a start and an end image.")
|
| 155 |
+
|
| 156 |
+
progress(0.1, desc="Preprocessing images...")
|
| 157 |
+
|
| 158 |
+
# Step 1: Process the start image to get our target dimensions based on the new rules.
|
| 159 |
+
processed_start_image = process_image_for_video(start_image_pil)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 160 |
|
| 161 |
+
# Step 2: Make the end image match the *exact* dimensions of the processed start image.
|
| 162 |
+
processed_end_image = resize_and_crop_to_match(end_image_pil, processed_start_image)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 163 |
|
| 164 |
+
target_height, target_width = processed_start_image.height, processed_start_image.width
|
| 165 |
+
|
| 166 |
+
# Handle seed and frame count
|
| 167 |
+
current_seed = random.randint(0, MAX_SEED) if randomize_seed else int(seed)
|
| 168 |
+
num_frames = np.clip(int(round(duration_seconds * FIXED_FPS)), MIN_FRAMES_MODEL, MAX_FRAMES_MODEL)
|
| 169 |
+
|
| 170 |
+
progress(0.2, desc=f"Generating {num_frames} frames at {target_width}x{target_height} (seed: {current_seed})...")
|
| 171 |
+
|
| 172 |
+
output_frames_list = pipe(
|
| 173 |
+
image=processed_start_image,
|
| 174 |
+
last_image=processed_end_image,
|
| 175 |
+
prompt=prompt,
|
| 176 |
+
negative_prompt=negative_prompt,
|
| 177 |
+
height=target_height,
|
| 178 |
+
width=target_width,
|
| 179 |
+
num_frames=num_frames,
|
| 180 |
+
guidance_scale=float(guidance_scale),
|
| 181 |
+
guidance_scale_2=float(guidance_scale_2),
|
| 182 |
+
num_inference_steps=int(steps),
|
| 183 |
+
generator=torch.Generator(device="cuda").manual_seed(current_seed),
|
| 184 |
+
).frames[0]
|
| 185 |
+
|
| 186 |
+
progress(0.9, desc="Encoding and saving video...")
|
| 187 |
+
|
| 188 |
+
with tempfile.NamedTemporaryFile(suffix=".mp4", delete=False) as tmpfile:
|
| 189 |
+
video_path = tmpfile.name
|
| 190 |
+
|
| 191 |
+
export_to_video(output_frames_list, video_path, fps=FIXED_FPS)
|
| 192 |
+
|
| 193 |
+
progress(1.0, desc="Done!")
|
| 194 |
+
return video_path, current_seed
|
| 195 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 196 |
|
| 197 |
+
# --- 3. Gradio User Interface --- (No changes needed here)
|
| 198 |
|
| 199 |
css = '''
|
| 200 |
.fillable{max-width: 1100px !important}
|
|
|
|
| 202 |
'''
|
| 203 |
with gr.Blocks(theme=gr.themes.Citrus(), css=css) as app:
|
| 204 |
gr.Markdown("# Wan 2.2 First/Last Frame Video Fast")
|
| 205 |
+
gr.Markdown("Running the [Wan 2.2 First/Last Frame workflow](https://www.reddit.com/r/StableDiffusion/comments/1me4306/psa_wan_22_does_first_frame_last_frame_out_of_the/) via 🧨 Diffusers and the [lightx2v/Wan2.2-Lightning](https://huggingface.co/lightx2v/Wan2.2-Lightning) principles on ZeroGPU")
|
| 206 |
+
|
| 207 |
with gr.Row():
|
| 208 |
with gr.Column():
|
| 209 |
with gr.Group():
|
| 210 |
with gr.Row():
|
| 211 |
+
start_image = gr.Image(type="pil", label="Start Frame", sources=["upload", "clipboard"])
|
| 212 |
+
end_image = gr.Image(type="pil", label="End Frame", sources=["upload", "clipboard"])
|
| 213 |
+
|
| 214 |
prompt = gr.Textbox(label="Prompt", info="Describe the transition between the two images")
|
| 215 |
+
|
| 216 |
+
with gr.Accordion("Advanced Settings", open=False):
|
| 217 |
+
duration_seconds_input = gr.Slider(minimum=MIN_DURATION, maximum=MAX_DURATION, step=0.1, value=2.1, label="Video Duration (seconds)", info=f"Clamped to model's {MIN_FRAMES_MODEL}-{MAX_FRAMES_MODEL} frames at {FIXED_FPS}fps.")
|
| 218 |
+
negative_prompt_input = gr.Textbox(label="Negative Prompt", value=default_negative_prompt, lines=3)
|
| 219 |
+
steps_slider = gr.Slider(minimum=1, maximum=30, step=1, value=8, label="Inference Steps")
|
| 220 |
+
guidance_scale_input = gr.Slider(minimum=0.0, maximum=10.0, step=0.5, value=1.0, label="Guidance Scale - high noise")
|
| 221 |
+
guidance_scale_2_input = gr.Slider(minimum=0.0, maximum=10.0, step=0.5, value=1.0, label="Guidance Scale - low noise")
|
| 222 |
+
with gr.Row():
|
| 223 |
+
seed_input = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=42)
|
| 224 |
+
randomize_seed_checkbox = gr.Checkbox(label="Randomize seed", value=True)
|
| 225 |
+
|
|
|
|
|
|
|
|
|
|
| 226 |
generate_button = gr.Button("Generate Video", variant="primary")
|
| 227 |
+
|
| 228 |
with gr.Column():
|
| 229 |
output_video = gr.Video(label="Generated Video", autoplay=True)
|
| 230 |
|
| 231 |
+
# Define the inputs list for the click event
|
| 232 |
+
ui_inputs = [
|
| 233 |
+
start_image,
|
| 234 |
+
end_image,
|
| 235 |
+
prompt,
|
| 236 |
+
negative_prompt_input,
|
| 237 |
+
duration_seconds_input,
|
| 238 |
+
steps_slider,
|
| 239 |
+
guidance_scale_input,
|
| 240 |
+
guidance_scale_2_input,
|
| 241 |
+
seed_input,
|
| 242 |
+
randomize_seed_checkbox
|
| 243 |
+
]
|
| 244 |
+
# The seed_input is both an input and an output to reflect the randomly generated seed
|
| 245 |
+
ui_outputs = [output_video, seed_input]
|
| 246 |
+
|
| 247 |
generate_button.click(
|
| 248 |
fn=generate_video,
|
| 249 |
+
inputs=ui_inputs,
|
| 250 |
+
outputs=ui_outputs
|
| 251 |
)
|
| 252 |
|
| 253 |
gr.Examples(
|
| 254 |
examples=[
|
| 255 |
["poli_tower.png", "tower_takes_off.png", "the man turns around"],
|
| 256 |
["ugly_sonic.jpeg", "squatting_sonic.png", "the character dodges the missiles"],
|
| 257 |
+
["capyabara_zoomed.png", "capyabara.webp", "a dramatic dolly zoom"],
|
| 258 |
],
|
| 259 |
inputs=[start_image, end_image, prompt],
|
| 260 |
outputs=output_video,
|