Spaces:
Running
Running
Commit
·
ca55618
0
Parent(s):
Duplicate from mattiagatti/image2mesh
Browse filesCo-authored-by: Mattia Gatti <mattiagatti@users.noreply.huggingface.co>
- .gitattributes +33 -0
- README.md +13 -0
- app.py +123 -0
- examples/bed.png +0 -0
- requirements.txt +7 -0
.gitattributes
ADDED
|
@@ -0,0 +1,33 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
*.7z filter=lfs diff=lfs merge=lfs -text
|
| 2 |
+
*.arrow filter=lfs diff=lfs merge=lfs -text
|
| 3 |
+
*.bin filter=lfs diff=lfs merge=lfs -text
|
| 4 |
+
*.bz2 filter=lfs diff=lfs merge=lfs -text
|
| 5 |
+
*.ftz filter=lfs diff=lfs merge=lfs -text
|
| 6 |
+
*.gz filter=lfs diff=lfs merge=lfs -text
|
| 7 |
+
*.h5 filter=lfs diff=lfs merge=lfs -text
|
| 8 |
+
*.joblib filter=lfs diff=lfs merge=lfs -text
|
| 9 |
+
*.lfs.* filter=lfs diff=lfs merge=lfs -text
|
| 10 |
+
*.mlmodel filter=lfs diff=lfs merge=lfs -text
|
| 11 |
+
*.model filter=lfs diff=lfs merge=lfs -text
|
| 12 |
+
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
| 13 |
+
*.npy filter=lfs diff=lfs merge=lfs -text
|
| 14 |
+
*.npz filter=lfs diff=lfs merge=lfs -text
|
| 15 |
+
*.onnx filter=lfs diff=lfs merge=lfs -text
|
| 16 |
+
*.ot filter=lfs diff=lfs merge=lfs -text
|
| 17 |
+
*.parquet filter=lfs diff=lfs merge=lfs -text
|
| 18 |
+
*.pb filter=lfs diff=lfs merge=lfs -text
|
| 19 |
+
*.pickle filter=lfs diff=lfs merge=lfs -text
|
| 20 |
+
*.pkl filter=lfs diff=lfs merge=lfs -text
|
| 21 |
+
*.pt filter=lfs diff=lfs merge=lfs -text
|
| 22 |
+
*.pth filter=lfs diff=lfs merge=lfs -text
|
| 23 |
+
*.rar filter=lfs diff=lfs merge=lfs -text
|
| 24 |
+
*.safetensors filter=lfs diff=lfs merge=lfs -text
|
| 25 |
+
saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
| 26 |
+
*.tar.* filter=lfs diff=lfs merge=lfs -text
|
| 27 |
+
*.tflite filter=lfs diff=lfs merge=lfs -text
|
| 28 |
+
*.tgz filter=lfs diff=lfs merge=lfs -text
|
| 29 |
+
*.wasm filter=lfs diff=lfs merge=lfs -text
|
| 30 |
+
*.xz filter=lfs diff=lfs merge=lfs -text
|
| 31 |
+
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 32 |
+
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 33 |
+
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
|
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
title: Image2mesh
|
| 3 |
+
emoji: 👁
|
| 4 |
+
colorFrom: green
|
| 5 |
+
colorTo: blue
|
| 6 |
+
sdk: gradio
|
| 7 |
+
sdk_version: 3.19.1
|
| 8 |
+
app_file: app.py
|
| 9 |
+
pinned: false
|
| 10 |
+
duplicated_from: mattiagatti/image2mesh
|
| 11 |
+
---
|
| 12 |
+
|
| 13 |
+
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
app.py
ADDED
|
@@ -0,0 +1,123 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import matplotlib.pyplot as plt
|
| 3 |
+
import numpy as np
|
| 4 |
+
import open3d as o3d
|
| 5 |
+
import os
|
| 6 |
+
from PIL import Image
|
| 7 |
+
import tempfile
|
| 8 |
+
import torch
|
| 9 |
+
from transformers import GLPNImageProcessor, GLPNForDepthEstimation
|
| 10 |
+
|
| 11 |
+
|
| 12 |
+
def predict_depth(image):
|
| 13 |
+
feature_extractor = GLPNImageProcessor.from_pretrained("vinvino02/glpn-nyu")
|
| 14 |
+
model = GLPNForDepthEstimation.from_pretrained("vinvino02/glpn-nyu")
|
| 15 |
+
|
| 16 |
+
# load and resize the input image
|
| 17 |
+
new_height = 480 if image.height > 480 else image.height
|
| 18 |
+
new_height -= (new_height % 32)
|
| 19 |
+
new_width = int(new_height * image.width / image.height)
|
| 20 |
+
diff = new_width % 32
|
| 21 |
+
new_width = new_width - diff if diff < 16 else new_width + 32 - diff
|
| 22 |
+
new_size = (new_width, new_height)
|
| 23 |
+
image = image.resize(new_size)
|
| 24 |
+
|
| 25 |
+
# prepare image for the model
|
| 26 |
+
inputs = feature_extractor(images=image, return_tensors="pt")
|
| 27 |
+
|
| 28 |
+
# get the prediction from the model
|
| 29 |
+
with torch.no_grad():
|
| 30 |
+
outputs = model(**inputs)
|
| 31 |
+
predicted_depth = outputs.predicted_depth
|
| 32 |
+
|
| 33 |
+
output = predicted_depth.squeeze().cpu().numpy() * 1000.0
|
| 34 |
+
|
| 35 |
+
# remove borders
|
| 36 |
+
pad = 16
|
| 37 |
+
output = output[pad:-pad, pad:-pad]
|
| 38 |
+
image = image.crop((pad, pad, image.width - pad, image.height - pad))
|
| 39 |
+
|
| 40 |
+
return image, output
|
| 41 |
+
|
| 42 |
+
|
| 43 |
+
def generate_mesh(image, depth_image, quality):
|
| 44 |
+
width, height = image.size
|
| 45 |
+
|
| 46 |
+
# depth_image = (depth_map * 255 / np.max(depth_map)).astype('uint8')
|
| 47 |
+
image = np.array(image)
|
| 48 |
+
|
| 49 |
+
# create rgbd image
|
| 50 |
+
depth_o3d = o3d.geometry.Image(depth_image)
|
| 51 |
+
image_o3d = o3d.geometry.Image(image)
|
| 52 |
+
rgbd_image = o3d.geometry.RGBDImage.create_from_color_and_depth(image_o3d, depth_o3d,
|
| 53 |
+
convert_rgb_to_intensity=False)
|
| 54 |
+
|
| 55 |
+
# camera settings
|
| 56 |
+
camera_intrinsic = o3d.camera.PinholeCameraIntrinsic()
|
| 57 |
+
camera_intrinsic.set_intrinsics(width, height, 500, 500, width / 2, height / 2)
|
| 58 |
+
|
| 59 |
+
# create point cloud
|
| 60 |
+
pcd = o3d.geometry.PointCloud.create_from_rgbd_image(rgbd_image, camera_intrinsic)
|
| 61 |
+
|
| 62 |
+
# outliers removal
|
| 63 |
+
cl, ind = pcd.remove_statistical_outlier(nb_neighbors=20, std_ratio=20.0)
|
| 64 |
+
pcd = pcd.select_by_index(ind)
|
| 65 |
+
|
| 66 |
+
# estimate normals
|
| 67 |
+
pcd.estimate_normals()
|
| 68 |
+
pcd.orient_normals_to_align_with_direction(orientation_reference=(0., 0., -1.))
|
| 69 |
+
|
| 70 |
+
# surface reconstruction
|
| 71 |
+
mesh = o3d.geometry.TriangleMesh.create_from_point_cloud_poisson(pcd, depth=quality, n_threads=1)[0]
|
| 72 |
+
|
| 73 |
+
# rotate the mesh
|
| 74 |
+
rotation = mesh.get_rotation_matrix_from_xyz((np.pi, np.pi, 0))
|
| 75 |
+
mesh.rotate(rotation, center=(0, 0, 0))
|
| 76 |
+
|
| 77 |
+
# save the mesh
|
| 78 |
+
temp_name = next(tempfile._get_candidate_names()) + '.obj'
|
| 79 |
+
o3d.io.write_triangle_mesh(temp_name, mesh)
|
| 80 |
+
|
| 81 |
+
return temp_name
|
| 82 |
+
|
| 83 |
+
|
| 84 |
+
def predict(image, quality):
|
| 85 |
+
image, depth_map = predict_depth(image)
|
| 86 |
+
depth_image = (depth_map * 255 / np.max(depth_map)).astype('uint8')
|
| 87 |
+
mesh_path = generate_mesh(image, depth_image, quality + 5)
|
| 88 |
+
colormap = plt.get_cmap('plasma')
|
| 89 |
+
depth_image = (colormap(depth_image) * 255).astype('uint8')
|
| 90 |
+
depth_image = Image.fromarray(depth_image)
|
| 91 |
+
|
| 92 |
+
return depth_image, mesh_path
|
| 93 |
+
|
| 94 |
+
|
| 95 |
+
# GUI
|
| 96 |
+
title = 'Image2Mesh'
|
| 97 |
+
description = 'Demo based on my <a href="https://towardsdatascience.com/generate-a-3d-mesh-from-an-image-with-python' \
|
| 98 |
+
'-12210c73e5cc">article</a>. This demo predicts the depth of an image and then generates the 3D mesh. ' \
|
| 99 |
+
'Choosing a higher quality increases the time to generate the mesh. You can download the mesh by ' \
|
| 100 |
+
'clicking the top-right button on the 3D viewer. '
|
| 101 |
+
examples = [[f'examples/{name}', 3] for name in sorted(os.listdir('examples'))]
|
| 102 |
+
|
| 103 |
+
# example image source:
|
| 104 |
+
# N. Silberman, D. Hoiem, P. Kohli, and Rob Fergus,
|
| 105 |
+
# Indoor Segmentation and Support Inference from RGBD Images (2012)
|
| 106 |
+
|
| 107 |
+
iface = gr.Interface(
|
| 108 |
+
fn=predict,
|
| 109 |
+
inputs=[
|
| 110 |
+
gr.Image(type='pil', label='Input Image'),
|
| 111 |
+
gr.Slider(1, 5, step=1, value=3, label='Mesh quality')
|
| 112 |
+
],
|
| 113 |
+
outputs=[
|
| 114 |
+
gr.Image(label='Depth'),
|
| 115 |
+
gr.Model3D(label='3D Model', clear_color=[0.0, 0.0, 0.0, 0.0])
|
| 116 |
+
],
|
| 117 |
+
examples=examples,
|
| 118 |
+
allow_flagging='never',
|
| 119 |
+
cache_examples=False,
|
| 120 |
+
title=title,
|
| 121 |
+
description=description
|
| 122 |
+
)
|
| 123 |
+
iface.launch()
|
examples/bed.png
ADDED
|
requirements.txt
ADDED
|
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
gradio
|
| 2 |
+
matplotlib
|
| 3 |
+
numpy
|
| 4 |
+
open3d
|
| 5 |
+
Pillow
|
| 6 |
+
torch
|
| 7 |
+
transformers
|