Spaces:
Sleeping
Sleeping
PseudoTerminal X
commited on
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,23 +1,41 @@
|
|
| 1 |
-
import
|
| 2 |
from diffusers import DiffusionPipeline
|
| 3 |
import gradio as gr
|
| 4 |
|
|
|
|
| 5 |
pipe = DiffusionPipeline.from_pretrained('ptx0/terminus-xl-velocity-v2', torch_dtype=torch.bfloat16)
|
| 6 |
-
#pipe.unet = torch.compile(pipe.unet)
|
| 7 |
pipe.to('cuda')
|
| 8 |
|
| 9 |
-
|
| 10 |
-
def generate(prompt):
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
|
|
|
|
|
|
|
| 18 |
|
| 19 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 20 |
fn=generate,
|
| 21 |
-
inputs=
|
| 22 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 23 |
).launch()
|
|
|
|
| 1 |
+
import torch
|
| 2 |
from diffusers import DiffusionPipeline
|
| 3 |
import gradio as gr
|
| 4 |
|
| 5 |
+
# Load the pre-trained diffusion model
|
| 6 |
pipe = DiffusionPipeline.from_pretrained('ptx0/terminus-xl-velocity-v2', torch_dtype=torch.bfloat16)
|
|
|
|
| 7 |
pipe.to('cuda')
|
| 8 |
|
| 9 |
+
# Define the image generation function with adjustable parameters and a progress bar
|
| 10 |
+
def generate(prompt, guidance_scale, num_inference_steps, negative_prompt):
|
| 11 |
+
with gr.Progress(steps=num_inference_steps) as progress:
|
| 12 |
+
for i in range(num_inference_steps):
|
| 13 |
+
progress.update(progress=i)
|
| 14 |
+
return pipe(
|
| 15 |
+
prompt,
|
| 16 |
+
negative_prompt=negative_prompt,
|
| 17 |
+
guidance_scale=guidance_scale,
|
| 18 |
+
num_inference_steps=num_inference_steps
|
| 19 |
+
).images
|
| 20 |
|
| 21 |
+
# Example prompts to demonstrate the model's capabilities
|
| 22 |
+
example_prompts = [
|
| 23 |
+
["A futuristic cityscape at night under a starry sky", 7.5, 25, "blurry, overexposed"],
|
| 24 |
+
["A serene landscape with a flowing river and autumn trees", 8.0, 20, "crowded, noisy"],
|
| 25 |
+
["An abstract painting of joy and energy in bright colors", 9.0, 30, "dark, dull"]
|
| 26 |
+
]
|
| 27 |
+
|
| 28 |
+
# Create a Gradio interface
|
| 29 |
+
iface = gr.Interface(
|
| 30 |
fn=generate,
|
| 31 |
+
inputs=[
|
| 32 |
+
gr.Text(label="Enter your prompt"),
|
| 33 |
+
gr.Slider(5, 10, step=0.1, label="Guidance Scale", default=7.5),
|
| 34 |
+
gr.Slider(10, 50, step=5, label="Number of Inference Steps", default=25),
|
| 35 |
+
gr.Text(value="underexposed, blurry, ugly, washed-out", label="Negative Prompt")
|
| 36 |
+
],
|
| 37 |
+
outputs=gr.Gallery(height=512, width=512, columns=2),
|
| 38 |
+
examples=example_prompts,
|
| 39 |
+
title="Image Generation with Diffusion Model",
|
| 40 |
+
description="Generate images based on textual prompts. Adjust the parameters to see how they affect the outcome."
|
| 41 |
).launch()
|