Spaces:
Sleeping
Sleeping
PseudoTerminal X
commited on
Update app.py
Browse files
app.py
CHANGED
|
@@ -4,18 +4,30 @@ import gradio as gr
|
|
| 4 |
import spaces
|
| 5 |
|
| 6 |
# Load the pre-trained diffusion model
|
| 7 |
-
pipe = DiffusionPipeline.from_pretrained('ptx0/
|
| 8 |
pipe.to('cuda')
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 9 |
|
| 10 |
# Define the image generation function with adjustable parameters and a progress bar
|
| 11 |
@spaces.GPU
|
| 12 |
-
def generate(prompt, guidance_scale, guidance_rescale, num_inference_steps, negative_prompt):
|
|
|
|
| 13 |
return pipe(
|
| 14 |
prompt,
|
| 15 |
negative_prompt=negative_prompt,
|
| 16 |
guidance_scale=guidance_scale,
|
| 17 |
guidance_rescale=guidance_rescale,
|
| 18 |
-
num_inference_steps=num_inference_steps
|
|
|
|
| 19 |
).images
|
| 20 |
|
| 21 |
# Example prompts to demonstrate the model's capabilities
|
|
@@ -25,18 +37,19 @@ example_prompts = [
|
|
| 25 |
["An abstract painting of joy and energy in bright colors", 9.0, 30, "dark, dull"]
|
| 26 |
]
|
| 27 |
|
| 28 |
-
# Create a Gradio interface
|
| 29 |
iface = gr.Interface(
|
| 30 |
fn=generate,
|
| 31 |
inputs=[
|
| 32 |
gr.Text(label="Enter your prompt"),
|
| 33 |
-
gr.Slider(1, 20, step=0.1, label="Guidance Scale", value=11.5)
|
| 34 |
gr.Slider(0, 1, step=0.1, label="Rescale classifier-free guidance", value=0.7),
|
| 35 |
gr.Slider(1, 50, step=1, label="Number of Inference Steps", value=25),
|
|
|
|
| 36 |
gr.Text(value="underexposed, blurry, ugly, washed-out", label="Negative Prompt")
|
| 37 |
],
|
| 38 |
outputs=gr.Gallery(height=1024, min_width=1024, columns=2),
|
| 39 |
examples=example_prompts,
|
| 40 |
-
title="
|
| 41 |
-
description="
|
| 42 |
).launch()
|
|
|
|
| 4 |
import spaces
|
| 5 |
|
| 6 |
# Load the pre-trained diffusion model
|
| 7 |
+
pipe = DiffusionPipeline.from_pretrained('ptx0/pseudo-flex-v2', torch_dtype=torch.bfloat16)
|
| 8 |
pipe.to('cuda')
|
| 9 |
+
import re
|
| 10 |
+
|
| 11 |
+
def extract_resolution(resolution_str):
|
| 12 |
+
match = re.match(r'(\d+)x(\d+)', resolution_str)
|
| 13 |
+
if match:
|
| 14 |
+
width = int(match.group(1))
|
| 15 |
+
height = int(match.group(2))
|
| 16 |
+
return (width, height)
|
| 17 |
+
else:
|
| 18 |
+
return None
|
| 19 |
|
| 20 |
# Define the image generation function with adjustable parameters and a progress bar
|
| 21 |
@spaces.GPU
|
| 22 |
+
def generate(prompt, guidance_scale, guidance_rescale, num_inference_steps, resolution, negative_prompt):
|
| 23 |
+
width, height = extract_resolution(resolution) or (1024, 1024)
|
| 24 |
return pipe(
|
| 25 |
prompt,
|
| 26 |
negative_prompt=negative_prompt,
|
| 27 |
guidance_scale=guidance_scale,
|
| 28 |
guidance_rescale=guidance_rescale,
|
| 29 |
+
num_inference_steps=num_inference_steps,
|
| 30 |
+
width=width, height=height
|
| 31 |
).images
|
| 32 |
|
| 33 |
# Example prompts to demonstrate the model's capabilities
|
|
|
|
| 37 |
["An abstract painting of joy and energy in bright colors", 9.0, 30, "dark, dull"]
|
| 38 |
]
|
| 39 |
|
| 40 |
+
# Create a Gradio interface, 1024x1024,1152x960,896x1152
|
| 41 |
iface = gr.Interface(
|
| 42 |
fn=generate,
|
| 43 |
inputs=[
|
| 44 |
gr.Text(label="Enter your prompt"),
|
| 45 |
+
gr.Slider(1, 20, step=0.1, label="Guidance Scale", value=11.5)
|
| 46 |
gr.Slider(0, 1, step=0.1, label="Rescale classifier-free guidance", value=0.7),
|
| 47 |
gr.Slider(1, 50, step=1, label="Number of Inference Steps", value=25),
|
| 48 |
+
gr.Radio(["1024x1024", "1152x960", "896x1152"], label="Resolution", value="1152x960"),
|
| 49 |
gr.Text(value="underexposed, blurry, ugly, washed-out", label="Negative Prompt")
|
| 50 |
],
|
| 51 |
outputs=gr.Gallery(height=1024, min_width=1024, columns=2),
|
| 52 |
examples=example_prompts,
|
| 53 |
+
title="Flex v2 (SD 2.1-v) Demonstration",
|
| 54 |
+
description="Flex v2 is a multi-aspect finetune of SD 2.1-v (768px) that is up-sized to a base resolution of 1 megapixel (1024px). This model utilises a zero-terminal SNR noise schedule, formulated to allow for very dark and very bright images."
|
| 55 |
).launch()
|