Spaces:
				
			
			
	
			
			
		Paused
		
	
	
	
			
			
	
	
	
	
		
		
		Paused
		
	| """Parses PaliGemma output.""" | |
| import functools | |
| import re | |
| import flax.linen as nn | |
| import jax | |
| import jax.numpy as jnp | |
| import numpy as np | |
| import PIL.Image | |
| EXAMPLE_STRING = '<loc0000><loc0000><loc0930><loc1012> <seg114><seg074><seg106><seg044><seg030><seg027><seg119><seg119><seg120><seg117><seg082><seg082><seg051><seg005><seg125><seg097> wall ; <loc0722><loc0047><loc0895><loc0378> <seg068><seg114><seg014><seg037><seg029><seg063><seg048><seg104><seg010><seg056><seg021><seg056><seg019><seg017><seg102><seg121> car ; <loc0180><loc0596><loc0782><loc0961> <seg026><seg028><seg028><seg026><seg104><seg026><seg029><seg022><seg000><seg068><seg092><seg125><seg003><seg127><seg121><seg043> david bowie ; <loc0234><loc0043><loc0736><loc0289> <seg068><seg008><seg091><seg064><seg007><seg055><seg017><seg090><seg042><seg052><seg068><seg086><seg001><seg014><seg093><seg052> david bowie ; <loc0230><loc0300><loc0736><loc0499> <seg073><seg011><seg114><seg059><seg048><seg097><seg091><seg022><seg007><seg036><seg091><seg022><seg016><seg009><seg003><seg036> david bowie' # pylint: disable=line-too-long | |
| _MODEL_PATH = 'vae-oid.npz' | |
| _SEGMENT_DETECT_RE = re.compile( | |
| r'(.*?)' + | |
| r'<loc(\d{4})>' * 4 + r'\s*' + | |
| '(?:%s)?' % (r'<seg(\d{3})>' * 16) + | |
| r'\s*([^;<>]+)? ?(?:; )?', | |
| ) | |
| def _get_params(checkpoint): | |
| """Converts PyTorch checkpoint to Flax params.""" | |
| def transp(kernel): | |
| return np.transpose(kernel, (2, 3, 1, 0)) | |
| def conv(name): | |
| return { | |
| 'bias': checkpoint[name + '.bias'], | |
| 'kernel': transp(checkpoint[name + '.weight']), | |
| } | |
| def resblock(name): | |
| return { | |
| 'Conv_0': conv(name + '.0'), | |
| 'Conv_1': conv(name + '.2'), | |
| 'Conv_2': conv(name + '.4'), | |
| } | |
| return { | |
| '_embeddings': checkpoint['_vq_vae._embedding'], | |
| 'Conv_0': conv('decoder.0'), | |
| 'ResBlock_0': resblock('decoder.2.net'), | |
| 'ResBlock_1': resblock('decoder.3.net'), | |
| 'ConvTranspose_0': conv('decoder.4'), | |
| 'ConvTranspose_1': conv('decoder.6'), | |
| 'ConvTranspose_2': conv('decoder.8'), | |
| 'ConvTranspose_3': conv('decoder.10'), | |
| 'Conv_1': conv('decoder.12'), | |
| } | |
| def _quantized_values_from_codebook_indices(codebook_indices, embeddings): | |
| batch_size, num_tokens = codebook_indices.shape | |
| assert num_tokens == 16, codebook_indices.shape | |
| unused_num_embeddings, embedding_dim = embeddings.shape | |
| encodings = jnp.take(embeddings, codebook_indices.reshape((-1)), axis=0) | |
| encodings = encodings.reshape((batch_size, 4, 4, embedding_dim)) | |
| return encodings | |
| def _get_reconstruct_masks(): | |
| """Reconstructs masks from codebook indices. | |
| Returns: | |
| A function that expects indices shaped `[B, 16]` of dtype int32, each | |
| ranging from 0 to 127 (inclusive), and that returns a decoded masks sized | |
| `[B, 64, 64, 1]`, of dtype float32, in range [-1, 1]. | |
| """ | |
| class ResBlock(nn.Module): | |
| features: int | |
| def __call__(self, x): | |
| original_x = x | |
| x = nn.Conv(features=self.features, kernel_size=(3, 3), padding=1)(x) | |
| x = nn.relu(x) | |
| x = nn.Conv(features=self.features, kernel_size=(3, 3), padding=1)(x) | |
| x = nn.relu(x) | |
| x = nn.Conv(features=self.features, kernel_size=(1, 1), padding=0)(x) | |
| return x + original_x | |
| class Decoder(nn.Module): | |
| """Upscales quantized vectors to mask.""" | |
| def __call__(self, x): | |
| num_res_blocks = 2 | |
| dim = 128 | |
| num_upsample_layers = 4 | |
| x = nn.Conv(features=dim, kernel_size=(1, 1), padding=0)(x) | |
| x = nn.relu(x) | |
| for _ in range(num_res_blocks): | |
| x = ResBlock(features=dim)(x) | |
| for _ in range(num_upsample_layers): | |
| x = nn.ConvTranspose( | |
| features=dim, | |
| kernel_size=(4, 4), | |
| strides=(2, 2), | |
| padding=2, | |
| transpose_kernel=True, | |
| )(x) | |
| x = nn.relu(x) | |
| dim //= 2 | |
| x = nn.Conv(features=1, kernel_size=(1, 1), padding=0)(x) | |
| return x | |
| def reconstruct_masks(codebook_indices): | |
| quantized = _quantized_values_from_codebook_indices( | |
| codebook_indices, params['_embeddings'] | |
| ) | |
| return Decoder().apply({'params': params}, quantized) | |
| with open(_MODEL_PATH, 'rb') as f: | |
| params = _get_params(dict(np.load(f))) | |
| return jax.jit(reconstruct_masks, backend='cpu') | |
| def extract_objs(text, width, height, unique_labels=False): | |
| """Returns objs for a string with "<loc>" and "<seg>" tokens.""" | |
| objs = [] | |
| seen = set() | |
| while text: | |
| m = _SEGMENT_DETECT_RE.match(text) | |
| if not m: | |
| break | |
| gs = list(m.groups()) | |
| before = gs.pop(0) | |
| name = gs.pop() | |
| y1, x1, y2, x2 = [int(x) / 1024 for x in gs[:4]] | |
| y1, x1, y2, x2 = map(round, (y1*height, x1*width, y2*height, x2*width)) | |
| seg_indices = gs[4:20] | |
| if seg_indices[0] is None: | |
| mask = None | |
| else: | |
| seg_indices = np.array([int(x) for x in seg_indices], dtype=np.int32) | |
| m64, = _get_reconstruct_masks()(seg_indices[None])[..., 0] | |
| m64 = np.clip(np.array(m64) * 0.5 + 0.5, 0, 1) | |
| m64 = PIL.Image.fromarray((m64 * 255).astype('uint8')) | |
| mask = np.zeros([height, width]) | |
| if y2 > y1 and x2 > x1: | |
| mask[y1:y2, x1:x2] = np.array(m64.resize([x2 - x1, y2 - y1])) / 255.0 | |
| content = m.group() | |
| if before: | |
| objs.append(dict(content=before)) | |
| content = content[len(before):] | |
| while unique_labels and name in seen: | |
| name = (name or '') + "'" | |
| seen.add(name) | |
| objs.append(dict( | |
| content=content, xyxy=(x1, y1, x2, y2), mask=mask, name=name)) | |
| text = text[len(before) + len(content):] | |
| if text: | |
| objs.append(dict(content=text)) | |
| return objs | |
| if __name__ == '__main__': | |
| # Simple test. | |
| print([ | |
| { | |
| k: (v.shape, v.mean()) if isinstance(v, np.ndarray) else v | |
| for k, v in obj.items() | |
| } | |
| for obj in extract_objs(EXAMPLE_STRING, 100, 200) | |
| ]) | |
