Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
|
@@ -2,6 +2,7 @@ import torch
|
|
| 2 |
import gradio as gr
|
| 3 |
import json
|
| 4 |
from torchvision import transforms
|
|
|
|
| 5 |
from PIL import Image, ImageDraw, ImageFont
|
| 6 |
|
| 7 |
TORCHSCRIPT_PATH = "res/screenrecognition-web350k-vins.torchscript"
|
|
@@ -14,71 +15,17 @@ with open(LABELS_PATH, "r") as f:
|
|
| 14 |
|
| 15 |
img_transforms = transforms.ToTensor()
|
| 16 |
|
| 17 |
-
# inter_class_nms
|
| 18 |
def inter_class_nms(boxes, scores, iou_threshold=0.5):
|
| 19 |
-
#
|
| 20 |
-
|
| 21 |
-
scores, class_indices = scores.max(dim=1)
|
| 22 |
|
| 23 |
-
#
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
final_class_indices = []
|
| 27 |
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
class_scores = scores[:, class_index]
|
| 31 |
-
class_boxes = boxes
|
| 32 |
-
|
| 33 |
-
# Indices of boxes sorted by score (highest first)
|
| 34 |
-
sorted_indices = torch.argsort(class_scores, descending=True)
|
| 35 |
-
|
| 36 |
-
while len(sorted_indices) > 0:
|
| 37 |
-
# Take the box with the highest score
|
| 38 |
-
highest_index = sorted_indices[0]
|
| 39 |
-
highest_box = class_boxes[highest_index]
|
| 40 |
-
|
| 41 |
-
# Add the highest box and score to the final list
|
| 42 |
-
final_boxes.append(highest_box)
|
| 43 |
-
final_scores.append(class_scores[highest_index])
|
| 44 |
-
final_class_indices.append(class_index)
|
| 45 |
-
|
| 46 |
-
# Remove the highest box from the list
|
| 47 |
-
sorted_indices = sorted_indices[1:]
|
| 48 |
-
|
| 49 |
-
# Compute IoU of the highest box with the rest
|
| 50 |
-
ious = iou(class_boxes[sorted_indices], highest_box)
|
| 51 |
-
|
| 52 |
-
# Keep only boxes with IoU less than the threshold
|
| 53 |
-
sorted_indices = sorted_indices[ious < iou_threshold]
|
| 54 |
-
|
| 55 |
-
return {'boxes': final_boxes, 'scores': final_scores}
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
def iou(boxes1, boxes2):
|
| 59 |
-
"""
|
| 60 |
-
Compute the Intersection over Union (IoU) of two sets of boxes.
|
| 61 |
-
|
| 62 |
-
Args:
|
| 63 |
-
- boxes1 (Tensor[N, 4]): ground truth boxes
|
| 64 |
-
- boxes2 (Tensor[M, 4]): predicted boxes
|
| 65 |
-
|
| 66 |
-
Returns:
|
| 67 |
-
- iou (Tensor[N, M]): the NxM matrix containing the pairwise IoU values for every element in boxes1 and boxes2
|
| 68 |
-
"""
|
| 69 |
-
|
| 70 |
-
area1 = (boxes1[:, 2] - boxes1[:, 0]) * (boxes1[:, 3] - boxes1[:, 1])
|
| 71 |
-
area2 = (boxes2[:, 2] - boxes2[:, 0]) * (boxes2[:, 3] - boxes2[:, 1])
|
| 72 |
-
|
| 73 |
-
lt = torch.max(boxes1[:, None, :2], boxes2[:, :2]) # [N,M,2]
|
| 74 |
-
rb = torch.min(boxes1[:, None, 2:], boxes2[:, 2:]) # [N,M,2]
|
| 75 |
-
|
| 76 |
-
wh = (rb - lt).clamp(min=0) # [N,M,2]
|
| 77 |
-
inter = wh[:, :, 0] * wh[:, :, 1] # [N,M]
|
| 78 |
-
|
| 79 |
-
iou = inter / (area1[:, None] + area2 - inter)
|
| 80 |
-
|
| 81 |
-
return iou
|
| 82 |
|
| 83 |
def predict(img, conf_thresh=0.4):
|
| 84 |
img_input = [img_transforms(img)]
|
|
|
|
| 2 |
import gradio as gr
|
| 3 |
import json
|
| 4 |
from torchvision import transforms
|
| 5 |
+
from torchvision.ops import nms
|
| 6 |
from PIL import Image, ImageDraw, ImageFont
|
| 7 |
|
| 8 |
TORCHSCRIPT_PATH = "res/screenrecognition-web350k-vins.torchscript"
|
|
|
|
| 15 |
|
| 16 |
img_transforms = transforms.ToTensor()
|
| 17 |
|
| 18 |
+
# inter_class_nms implemented by GPT
|
| 19 |
def inter_class_nms(boxes, scores, iou_threshold=0.5):
|
| 20 |
+
# Perform non-maximum suppression
|
| 21 |
+
keep = nms(boxes, scores, iou_threshold)
|
|
|
|
| 22 |
|
| 23 |
+
# Filter boxes and scores
|
| 24 |
+
new_boxes = boxes[keep]
|
| 25 |
+
new_scores = scores[keep]
|
|
|
|
| 26 |
|
| 27 |
+
# Return the result in a dictionary
|
| 28 |
+
return {'boxes': new_boxes, 'scores': new_scores}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 29 |
|
| 30 |
def predict(img, conf_thresh=0.4):
|
| 31 |
img_input = [img_transforms(img)]
|