Spaces:
Sleeping
Sleeping
Commit
·
c6773b7
1
Parent(s):
f23ce5c
Update files
Browse files- app.py +6 -2
- results_il-common.csv +0 -0
app.py
CHANGED
|
@@ -146,13 +146,15 @@ def plot_acc_rate(rate_compare_results_df: pl.DataFrame, width: int = 1000, heig
|
|
| 146 |
|
| 147 |
|
| 148 |
def update_data(
|
| 149 |
-
dataset: str, benchmark: str, intermediate: bool, mim: bool, log_x: bool, search_bar: str
|
| 150 |
) -> tuple[alt.LayerChart, pl.DataFrame]:
|
| 151 |
compare_results_df = pl.read_csv(f"results_{dataset}.csv")
|
| 152 |
if intermediate is False:
|
| 153 |
compare_results_df = compare_results_df.filter(pl.col("Intermediate") == intermediate)
|
| 154 |
if mim is False:
|
| 155 |
compare_results_df = compare_results_df.filter(pl.col("MIM") == mim)
|
|
|
|
|
|
|
| 156 |
|
| 157 |
x_scale_type = "log" if log_x is True else "linear"
|
| 158 |
|
|
@@ -269,6 +271,7 @@ def app() -> None:
|
|
| 269 |
info="Show models that underwent intermediate training (extra data)",
|
| 270 |
)
|
| 271 |
mim = gr.Checkbox(label="MIM", value=True, info="Show models with Masked Image Modeling pre-training")
|
|
|
|
| 272 |
log_x = gr.Checkbox(label="Log scale X-axis", value=False)
|
| 273 |
|
| 274 |
with gr.Column():
|
|
@@ -287,7 +290,7 @@ def app() -> None:
|
|
| 287 |
plot = gr.Plot(container=False)
|
| 288 |
table = gr.Dataframe(show_search="search")
|
| 289 |
|
| 290 |
-
inputs = [dataset_dropdown, benchmark_dropdown, intermediate, mim, log_x, search_bar]
|
| 291 |
outputs = [plot, table]
|
| 292 |
leaderboard.load(update_data, inputs=inputs, outputs=outputs)
|
| 293 |
|
|
@@ -295,6 +298,7 @@ def app() -> None:
|
|
| 295 |
benchmark_dropdown.change(update_data, inputs=inputs, outputs=outputs)
|
| 296 |
intermediate.change(update_data, inputs=inputs, outputs=outputs)
|
| 297 |
mim.change(update_data, inputs=inputs, outputs=outputs)
|
|
|
|
| 298 |
log_x.change(update_data, inputs=inputs, outputs=outputs)
|
| 299 |
search_bar.change(update_data, inputs=inputs, outputs=outputs)
|
| 300 |
|
|
|
|
| 146 |
|
| 147 |
|
| 148 |
def update_data(
|
| 149 |
+
dataset: str, benchmark: str, intermediate: bool, mim: bool, dist: bool, log_x: bool, search_bar: str
|
| 150 |
) -> tuple[alt.LayerChart, pl.DataFrame]:
|
| 151 |
compare_results_df = pl.read_csv(f"results_{dataset}.csv")
|
| 152 |
if intermediate is False:
|
| 153 |
compare_results_df = compare_results_df.filter(pl.col("Intermediate") == intermediate)
|
| 154 |
if mim is False:
|
| 155 |
compare_results_df = compare_results_df.filter(pl.col("MIM") == mim)
|
| 156 |
+
if dist is False:
|
| 157 |
+
compare_results_df = compare_results_df.filter(pl.col("Distilled") == dist)
|
| 158 |
|
| 159 |
x_scale_type = "log" if log_x is True else "linear"
|
| 160 |
|
|
|
|
| 271 |
info="Show models that underwent intermediate training (extra data)",
|
| 272 |
)
|
| 273 |
mim = gr.Checkbox(label="MIM", value=True, info="Show models with Masked Image Modeling pre-training")
|
| 274 |
+
dist = gr.Checkbox(label="Distilled", value=True, info="Show distilled models")
|
| 275 |
log_x = gr.Checkbox(label="Log scale X-axis", value=False)
|
| 276 |
|
| 277 |
with gr.Column():
|
|
|
|
| 290 |
plot = gr.Plot(container=False)
|
| 291 |
table = gr.Dataframe(show_search="search")
|
| 292 |
|
| 293 |
+
inputs = [dataset_dropdown, benchmark_dropdown, intermediate, mim, dist, log_x, search_bar]
|
| 294 |
outputs = [plot, table]
|
| 295 |
leaderboard.load(update_data, inputs=inputs, outputs=outputs)
|
| 296 |
|
|
|
|
| 298 |
benchmark_dropdown.change(update_data, inputs=inputs, outputs=outputs)
|
| 299 |
intermediate.change(update_data, inputs=inputs, outputs=outputs)
|
| 300 |
mim.change(update_data, inputs=inputs, outputs=outputs)
|
| 301 |
+
dist.change(update_data, inputs=inputs, outputs=outputs)
|
| 302 |
log_x.change(update_data, inputs=inputs, outputs=outputs)
|
| 303 |
search_bar.change(update_data, inputs=inputs, outputs=outputs)
|
| 304 |
|
results_il-common.csv
CHANGED
|
The diff for this file is too large to render.
See raw diff
|
|
|