File size: 20,871 Bytes
10456f4
 
 
 
 
 
242d22e
 
10456f4
 
 
242d22e
10456f4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
242d22e
10456f4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
242d22e
 
 
 
 
 
 
 
 
 
 
 
10456f4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
242d22e
10456f4
 
 
 
 
 
 
 
242d22e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
10456f4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
242d22e
 
 
 
 
 
 
10456f4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
242d22e
 
 
 
 
 
 
 
 
 
 
 
 
10456f4
 
 
 
 
 
c3933bc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
import os
import io
import json
import uuid
import base64
import time
import random
import math
from typing import List, Dict, Tuple, Optional

import gradio as gr
import spaces  # Required for ZeroGPU Spaces (@spaces.GPU)

# We use the official Ollama Python client for convenience
# It respects the OLLAMA_HOST env var, but we will also allow overriding via UI.
try:
    from ollama import Client
except Exception as e:
    raise RuntimeError(
        "Failed to import the 'ollama' Python client. Ensure it's in requirements.txt."
    ) from e

DEFAULT_PORT = int(os.getenv("PORT", 7860))
DEFAULT_OLLAMA_HOST = os.getenv("OLLAMA_HOST", "").strip() or os.getenv("OLLAMA_BASE_URL", "").strip() or ""
DEFAULT_MODEL = os.getenv("OLLAMA_MODEL", "llama3.1")
APP_TITLE = "Ollama Chat (Gradio + Docker)"
APP_DESCRIPTION = """
A lightweight, fully functional chat UI for Ollama, designed to run on Hugging Face Spaces (Docker).
- Bring your own Ollama host (set OLLAMA_HOST in repo secrets or via the UI).
- Streamed responses, model management (list/pull), and basic vision support (image input).
- Compatible with Spaces ZeroGPU via a @spaces.GPU-decorated function (see GPU Tools panel).
"""


def ensure_scheme(host: str) -> str:
    if not host:
        return host
    host = host.strip()
    if not host.startswith(("http://", "https://")):
        host = "http://" + host
    # remove trailing slashes
    while host.endswith("/"):
        host = host[:-1]
    return host


def get_client(host: str) -> Client:
    host = ensure_scheme(host)
    if not host:
        # fall back to environment-configured client; Client() picks up OLLAMA_HOST if set
        return Client()
    return Client(host=host)


def list_models(host: str) -> Tuple[List[str], Optional[str]]:
    try:
        client = get_client(host)
        data = client.list()  # {'models': [{'name': 'llama3:latest', ...}, ...]}
        names = sorted(m.get("name", "") for m in data.get("models", []) if m.get("name"))
        return names, None
    except Exception as e:
        return [], f"Unable to list models from {host or '(env default)'}: {e}"


def test_connection(host: str) -> Tuple[bool, str]:
    names, err = list_models(host)
    if err:
        return False, err
    if not names:
        return True, f"Connected to {host or '(env default)'} but no models found. Pull one to continue."
    return True, f"Connected to {host or '(env default)'}; found {len(names)} models."


def show_model(host: str, model: str) -> Tuple[Optional[dict], Optional[str]]:
    try:
        client = get_client(host)
        info = client.show(model=model)
        return info, None
    except Exception as e:
        return None, f"Unable to show model '{model}': {e}"


def pull_model(host: str, model: str):
    """
    Generator that pulls a model on the remote Ollama host, yielding progress strings.
    """
    if not model:
        yield "Provide a model name to pull (e.g., llama3.1, mistral, qwen2.5:latest)"
        return
    try:
        client = get_client(host)
        already, _ = show_model(host, model)
        if already:
            yield f"Model '{model}' already present on the host."
            return

        yield f"Pulling '{model}' from registry..."
        for part in client.pull(model=model, stream=True):
            # part has keys: status, digest, total, completed, etc.
            status = part.get("status", "")
            total = part.get("total", 0)
            completed = part.get("completed", 0)
            pct = f"{(completed / total * 100):.1f}%" if total else ""
            line = status
            if pct:
                line += f" ({pct})"
            yield line
        yield f"Finished pulling '{model}'."
    except Exception as e:
        yield f"Error pulling '{model}': {e}"


def encode_image_to_base64(path: str) -> Optional[str]:
    try:
        with open(path, "rb") as f:
            return base64.b64encode(f.read()).decode("utf-8")
    except Exception:
        return None


def build_ollama_messages(
    system_prompt: str,
    convo_messages: List[Dict],  # stored chat history as Ollama-style messages
    user_text: str,
    image_paths: Optional[List[str]] = None,
) -> List[Dict]:
    """
    Returns the full message list to send to Ollama, including system prompt (if provided),
    past conversation, and the new user message.
    """
    messages = []
    if system_prompt.strip():
        messages.append({"role": "system", "content": system_prompt.strip()})

    messages.extend(convo_messages or [])

    msg: Dict = {"role": "user", "content": user_text or ""}
    if image_paths:
        images_b64 = []
        for p in image_paths:
            b64 = encode_image_to_base64(p)
            if b64:
                images_b64.append(b64)
        if images_b64:
            msg["images"] = images_b64
    messages.append(msg)
    return messages


def messages_for_chatbot(
    text: str,
    image_paths: Optional[List[str]] = None,
    role: str = "user",
) -> Dict:
    """
    Build a Gradio Chatbot message in "messages" mode:
    {"role": "user"|"assistant", "content": [{"type":"text","text":...}, {"type":"image","image":<PIL.Image>}, ...]}
    """
    content = []
    t = (text or "").strip()
    if t:
        content.append({"type": "text", "text": t})

    if image_paths:
        # Only embed small previews; Gradio will load images from file path.
        for p in image_paths:
            try:
                # Gradio accepts PIL.Image or path. Provide path for simplicity.
                content.append({"type": "image", "image": p})
            except Exception:
                continue
    return {"role": role, "content": content if content else [{"type": "text", "text": ""}]}


def stream_chat(
    host: str,
    model: str,
    system_prompt: str,
    temperature: float,
    top_p: float,
    top_k: int,
    repeat_penalty: float,
    num_ctx: int,
    max_tokens: Optional[int],
    seed: Optional[int],
    convo_messages: List[Dict],
    chatbot_history: List[Dict],
    user_text: str,
    image_files: Optional[List[str]],
):
    """
    Stream a chat completion from Ollama and update Gradio Chatbot incrementally.
    """
    # 1) Add user message to chatbot and state
    user_msg_for_bot = messages_for_chatbot(user_text, image_files, role="user")
    chatbot_history = chatbot_history + [user_msg_for_bot]

    # 2) Build messages for Ollama
    ollama_messages = build_ollama_messages(system_prompt, convo_messages, user_text, image_files)

    # 3) Prepare options
    options = {
        "temperature": temperature,
        "top_p": top_p,
        "top_k": top_k,
        "repeat_penalty": repeat_penalty,
        "num_ctx": num_ctx,
    }
    if max_tokens is not None and max_tokens > 0:
        # Some backends expect "num_predict"; ensure compatibility
        options["num_predict"] = max_tokens
    if seed is not None:
        options["seed"] = seed

    # 4) Start streaming
    client = get_client(host)
    assistant_text_accum = ""
    start_time = time.time()

    # Prepare assistant placeholder in Chatbot
    assistant_msg_for_bot = messages_for_chatbot("", None, role="assistant")
    chatbot_history = chatbot_history + [assistant_msg_for_bot]
    status_md = f"Model: {model} | Host: {ensure_scheme(host) or '(env default)'} | Streaming..."

    # Initial yield to display user msg and assistant placeholder
    yield chatbot_history, status_md, convo_messages

    try:
        for part in client.chat(
            model=model,
            messages=ollama_messages,
            stream=True,
            options=options,
        ):
            msg = part.get("message", {}) or {}
            delta = msg.get("content", "")
            if delta:
                assistant_text_accum += delta
                chatbot_history[-1] = messages_for_chatbot(assistant_text_accum, None, role="assistant")

            done = part.get("done", False)
            if done:
                eval_count = part.get("eval_count", 0)
                prompt_eval_count = part.get("prompt_eval_count", 0)
                total = time.time() - start_time
                tok_s = (eval_count / total) if total > 0 else 0.0
                status_md = (
                    f"Model: {model} | Host: {ensure_scheme(host) or '(env default)'} | "
                    f"Prompt tokens: {prompt_eval_count} | Output tokens: {eval_count} | "
                    f"Time: {total:.2f}s | Speed: {tok_s:.1f} tok/s"
                )
            yield chatbot_history, status_md, convo_messages

        # 5) Save to conversation state: add the final user+assistant to convo_messages
        convo_messages = convo_messages + [
            {
                "role": "user",
                "content": user_text or "",
                **(
                    {
                        "images": [
                            b for p in (image_files or [])
                            for b in ([encode_image_to_base64(p)] if encode_image_to_base64(p) else [])
                        ]
                    } if image_files else {}
                ),
            },
            {"role": "assistant", "content": assistant_text_accum},
        ]

        yield chatbot_history, status_md, convo_messages

    except Exception as e:
        err_msg = f"Error during generation: {e}"
        chatbot_history[-1] = messages_for_chatbot(err_msg, None, role="assistant")
        yield chatbot_history, err_msg, convo_messages


def clear_conversation():
    return [], [], ""


def export_conversation(history: List[Dict], convo_messages: List[Dict]) -> Tuple[str, str]:
    export_blob = {
        "chat_messages": history,
        "ollama_messages": convo_messages,
        "meta": {
            "title": APP_TITLE,
            "exported_at": time.strftime("%Y-%m-%d %H:%M:%S", time.gmtime()),
            "version": "1.1",
        },
    }
    path = f"chat_export_{int(time.time())}.json"
    with open(path, "w", encoding="utf-8") as f:
        json.dump(export_blob, f, ensure_ascii=False, indent=2)
    return path, f"Exported {len(history)} messages to {path}"


# ---------------------- ZeroGPU support: define a GPU-decorated function ----------------------
@spaces.GPU
def gpu_ping(workload: int = 256) -> dict:
    """
    Minimal function to satisfy ZeroGPU Spaces requirement and optionally exercise the GPU.
    If torch with CUDA is available, perform a tiny matmul on GPU; otherwise do a CPU loop.
    """
    t0 = time.time()
    # Light CPU math as fallback
    acc = 0.0
    for i in range(max(1, workload)):
        x = random.random() * 1000.0
        # harmless math; avoids dependency on numpy
        s = math.sin(x)
        c = math.cos(x)
        t = math.tan(x) if abs(math.cos(x)) > 1e-9 else 1.0
        acc += s * c / t

    info = {"mode": "cpu", "ops": workload}
    # Optional CUDA check (torch not required)
    try:
        import torch  # noqa: F401
        if torch.cuda.is_available():
            a = torch.randn((256, 256), device="cuda")
            b = torch.mm(a, a)
            _ = float(b.mean().item())
            info["mode"] = "cuda"
            info["device"] = torch.cuda.get_device_name(torch.cuda.current_device())
            info["cuda"] = True
        else:
            info["cuda"] = False
    except Exception:
        # torch not installed or other issue; still fine for ZeroGPU detection
        info["cuda"] = "unavailable"

    elapsed = time.time() - t0
    return {"ok": True, "elapsed_s": round(elapsed, 4), "acc_checksum": float(acc % 1.0), "info": info}
# ---------------------------------------------------------------------------------------------


def ui() -> gr.Blocks:
    with gr.Blocks(title=APP_TITLE, theme=gr.themes.Soft()) as demo:
        gr.Markdown(f"# {APP_TITLE}")
        gr.Markdown(APP_DESCRIPTION)

        # States
        state_convo = gr.State([])   # stores ollama-format convo (no system prompt)
        state_history = gr.State([]) # stores Chatbot messages (messages-mode)
        state_system_prompt = gr.State("")
        state_host = gr.State(DEFAULT_OLLAMA_HOST)
        state_session = gr.State(str(uuid.uuid4()))

        with gr.Row():
            with gr.Column(scale=3):
                chatbot = gr.Chatbot(label="Chat", type="messages", height=520, avatar_images=(None, None))
                with gr.Row():
                    txt = gr.Textbox(
                        label="Your message",
                        placeholder="Ask anything...",
                        autofocus=True,
                        scale=4,
                    )
                image_files = gr.Files(
                    label="Optional image(s)",
                    file_types=["image"],
                    type="filepath",
                    visible=True,
                )
                with gr.Row():
                    send_btn = gr.Button("Send", variant="primary")
                    stop_btn = gr.Button("Stop")
                    clear_btn = gr.Button("Clear")
                    export_btn = gr.Button("Export")

                status = gr.Markdown("Ready.", elem_id="status_box")

            with gr.Column(scale=2):
                gr.Markdown("## Connection")
                host_in = gr.Textbox(
                    label="Ollama Host URL",
                    placeholder="http://127.0.0.1:11434 (or leave blank to use server env OLLAMA_HOST)",
                    value=DEFAULT_OLLAMA_HOST,
                )
                with gr.Row():
                    test_btn = gr.Button("Test Connection")
                    refresh_models_btn = gr.Button("Refresh Models")

                models_dd = gr.Dropdown(
                    choices=[],
                    value=None,
                    label="Model",
                    allow_custom_value=True,
                    info="Select a model from the server or type a name (e.g., llama3.1, mistral, phi4:latest)",
                )
                pull_model_txt = gr.Textbox(
                    label="Pull Model (by name)",
                    placeholder="e.g., llama3.1, mistral, qwen2.5:latest",
                )
                pull_btn = gr.Button("Pull Model")
                pull_log = gr.Textbox(label="Pull Progress", interactive=False, lines=6)

                gr.Markdown("## System Prompt")
                sys_prompt = gr.Textbox(
                    label="System Prompt",
                    placeholder="You are a helpful assistant...",
                    lines=4,
                    value=os.getenv("SYSTEM_PROMPT", ""),
                )

                gr.Markdown("## Generation Settings")
                with gr.Row():
                    temperature = gr.Slider(0.0, 2.0, value=0.7, step=0.05, label="Temperature")
                    top_p = gr.Slider(0.0, 1.0, value=0.9, step=0.01, label="Top-p")
                with gr.Row():
                    top_k = gr.Slider(0, 200, value=40, step=1, label="Top-k")
                    repeat_penalty = gr.Slider(0.0, 2.0, value=1.1, step=0.01, label="Repeat Penalty")
                with gr.Row():
                    num_ctx = gr.Slider(256, 8192, value=4096, step=256, label="Context Window (num_ctx)")
                    max_tokens = gr.Slider(0, 8192, value=0, step=16, label="Max New Tokens (0 = auto)")
                seed = gr.Number(value=None, label="Seed (optional)", precision=0)

                gr.Markdown("## GPU Tools (ZeroGPU compatible)")
                with gr.Row():
                    gpu_workload = gr.Slider(64, 4096, value=256, step=64, label="GPU Ping Workload")
                with gr.Row():
                    gpu_btn = gr.Button("Run GPU Ping")
                gpu_out = gr.Textbox(label="GPU Ping Result", lines=6, interactive=False)

        # Wire up actions
        def _on_load():
            # Initialize models list based on default host
            host = DEFAULT_OLLAMA_HOST
            names, err = list_models(host)
            if err:
                status_msg = f"Note: {err}"
            else:
                status_msg = f"Loaded {len(names)} models from {ensure_scheme(host) or '(env default)'}."
            # If DEFAULT_MODEL is available select it otherwise pick first
            value = DEFAULT_MODEL if DEFAULT_MODEL in names else (names[0] if names else None)
            return (
                names, value,  # models_dd
                host,          # host_in
                status_msg,    # status
                [], [], "",    # state_history, state_convo, system prompt state
            )

        load_outputs = [
            models_dd, models_dd,
            host_in,
            status,
            state_history, state_convo, state_system_prompt
        ]
        demo.load(_on_load, outputs=load_outputs)

        # When host changes, update state_host
        def set_host(h):
            return ensure_scheme(h)

        host_in.change(set_host, inputs=host_in, outputs=state_host)

        # Test connection
        def _test(h):
            ok, msg = test_connection(h)
            # refresh models if ok
            names, err = list_models(h) if ok else ([], None)
            model_val = models_dd.value if ok and models_dd.value in names else (names[0] if names else None)
            if err:
                msg += f"\nAlso: {err}"
            return names, model_val, msg

        test_btn.click(_test, inputs=host_in, outputs=[models_dd, models_dd, status])

        # Refresh models
        refresh_models_btn.click(_test, inputs=host_in, outputs=[models_dd, models_dd, status])

        # Pull model progress
        def _pull(h, name):
            if not name:
                yield "Please enter a model name to pull."
                return
            for line in pull_model(h, name.strip()):
                yield line

        pull_btn.click(_pull, inputs=[host_in, pull_model_txt], outputs=pull_log)

        # Clear conversation
        clear_btn.click(clear_conversation, outputs=[chatbot, state_convo, status])

        # Export
        export_file = gr.File(label="Download Conversation", visible=True)
        export_btn.click(export_conversation, inputs=[state_history, state_convo], outputs=[export_file, status])

        # Send/Stream
        def _submit(
            h, m, sp, t, tp, tk, rp, ctx, mx, sd, convo, history, text, files
        ):
            # Convert mx slider 0 -> None (auto)
            mx_int = int(mx) if mx and int(mx) > 0 else None
            sd_int = int(sd) if sd is not None else None
            yield from stream_chat(
                host=h,
                model=m or DEFAULT_MODEL,
                system_prompt=sp or "",
                temperature=float(t),
                top_p=float(tp),
                top_k=int(tk),
                repeat_penalty=float(rp),
                num_ctx=int(ctx),
                max_tokens=mx_int,
                seed=sd_int,
                convo_messages=convo,
                chatbot_history=history,
                user_text=text,
                image_files=files,
            )

        submit_event = send_btn.click(
            _submit,
            inputs=[host_in, models_dd, sys_prompt, temperature, top_p, top_k, repeat_penalty, num_ctx, max_tokens, seed, state_convo, state_history, txt, image_files],
            outputs=[chatbot, status, state_convo],
        )
        # Pressing Enter in the textbox also triggers submit
        txt.submit(
            _submit,
            inputs=[host_in, models_dd, sys_prompt, temperature, top_p, top_k, repeat_penalty, num_ctx, max_tokens, seed, state_convo, state_history, txt, image_files],
            outputs=[chatbot, status, state_convo],
        )

        # Stop streaming
        stop_btn.click(None, None, None, cancels=[submit_event])

        # After successful send, clear the input box and keep images cleared
        def _post_send():
            return "", None

        send_btn.click(_post_send, outputs=[txt, image_files])
        txt.submit(_post_send, outputs=[txt, image_files])

        # Keep Chatbot state in sync (so export works)
        def _sync_chatbot_state(history):
            return history

        chatbot.change(_sync_chatbot_state, inputs=chatbot, outputs=state_history)

        # GPU Ping hook
        def _gpu_ping_ui(n):
            try:
                res = gpu_ping(int(n))
                try:
                    return json.dumps(res, indent=2)
                except Exception:
                    return str(res)
            except Exception as e:
                return f"GPU ping failed: {e}"

        gpu_btn.click(_gpu_ping_ui, inputs=[gpu_workload], outputs=[gpu_out])

    return demo


if __name__ == "__main__":
    demo = ui()
    demo.queue(default_concurrency_limit=10)
    demo.launch(server_name="0.0.0.0", server_port=DEFAULT_PORT, show_api=True, ssr_mode=False)