first attempt
Browse files
agent.py
CHANGED
|
@@ -1,7 +1,149 @@
|
|
| 1 |
-
from typing import TypedDict, Annotated
|
| 2 |
from langgraph.graph.message import add_messages
|
| 3 |
-
from langchain_core.messages import AnyMessage, HumanMessage,
|
| 4 |
-
from langgraph.prebuilt import ToolNode
|
| 5 |
-
from langgraph.graph import START, StateGraph
|
| 6 |
-
from
|
| 7 |
-
from
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from typing import TypedDict, Annotated, Optional
|
| 2 |
from langgraph.graph.message import add_messages
|
| 3 |
+
from langchain_core.messages import AnyMessage, HumanMessage, SystemMessage, ToolMessage
|
| 4 |
+
from langgraph.prebuilt import ToolNode, tools_condition
|
| 5 |
+
from langgraph.graph import START, StateGraph, END
|
| 6 |
+
from langchain_openai import ChatOpenAI
|
| 7 |
+
from pydantic import SecretStr
|
| 8 |
+
import os
|
| 9 |
+
from dotenv import load_dotenv
|
| 10 |
+
from tools import download_file_from_url, basic_web_search, extract_url_content, wikipedia_reader, transcribe_audio_file, question_youtube_video
|
| 11 |
+
|
| 12 |
+
# Load environment variables from .env file
|
| 13 |
+
load_dotenv()
|
| 14 |
+
|
| 15 |
+
OPENROUTER_API_KEY = os.getenv("OPENROUTER_API_KEY", "")
|
| 16 |
+
MAIN_LLM_MODEL = os.getenv("MAIN_LLM_MODEL", "google/gemini-2.0-flash-lite-001")
|
| 17 |
+
|
| 18 |
+
# Generate the chat interface, including the tools
|
| 19 |
+
if not OPENROUTER_API_KEY:
|
| 20 |
+
raise ValueError("OPENROUTER_API_KEY is not set. Please ensure it is defined in your .env file or environment variables.")
|
| 21 |
+
|
| 22 |
+
|
| 23 |
+
def create_agent_graph():
|
| 24 |
+
|
| 25 |
+
main_llm = ChatOpenAI(
|
| 26 |
+
model=MAIN_LLM_MODEL, # e.g., "mistralai/mistral-7b-instruct"
|
| 27 |
+
api_key=SecretStr(OPENROUTER_API_KEY), # Your OpenRouter API key
|
| 28 |
+
base_url="https://openrouter.ai/api/v1", # Standard OpenRouter API base
|
| 29 |
+
verbose=True # Optional: for debugging
|
| 30 |
+
)
|
| 31 |
+
|
| 32 |
+
|
| 33 |
+
tools = [download_file_from_url, basic_web_search, extract_url_content, wikipedia_reader, transcribe_audio_file, question_youtube_video] # Ensure these tools are defined
|
| 34 |
+
chat_with_tools = main_llm.bind_tools(tools)
|
| 35 |
+
|
| 36 |
+
class AgentState(TypedDict):
|
| 37 |
+
messages: Annotated[list[AnyMessage], add_messages]
|
| 38 |
+
file_url: Optional[str | None]
|
| 39 |
+
file_ext: Optional[str | None]
|
| 40 |
+
local_file_path: Optional[str | None]
|
| 41 |
+
final_answer: Optional[str | None]
|
| 42 |
+
|
| 43 |
+
def assistant(state: AgentState):
|
| 44 |
+
return {
|
| 45 |
+
"messages": [chat_with_tools.invoke(state["messages"])],
|
| 46 |
+
"file_url": state.get("file_url", None),
|
| 47 |
+
"file_ext": state.get("file_ext", None),
|
| 48 |
+
"local_file_path": state.get("local_file_path", None),
|
| 49 |
+
"final_answer": state.get("final_answer", None)
|
| 50 |
+
}
|
| 51 |
+
|
| 52 |
+
def file_path_updater_node(state: AgentState):
|
| 53 |
+
download_tool_response = state["messages"][-1].content
|
| 54 |
+
file_path = download_tool_response.split("Local File Path: ")[-1].strip()
|
| 55 |
+
return {
|
| 56 |
+
"local_file_path": file_path
|
| 57 |
+
}
|
| 58 |
+
|
| 59 |
+
def file_path_condition(state: AgentState) -> str:
|
| 60 |
+
if state["messages"] and isinstance(state["messages"][-1], ToolMessage):
|
| 61 |
+
tool_response = state["messages"][-1]
|
| 62 |
+
if tool_response.name == "download_file_from_url":
|
| 63 |
+
return "update_file_path" # Route to file path updater if a file was downloaded
|
| 64 |
+
return "assistant" # Otherwise, continue with the assistant node
|
| 65 |
+
|
| 66 |
+
def format_final_answer_node(state: AgentState) -> AgentState:
|
| 67 |
+
"""
|
| 68 |
+
Formats the final answer based on the state.
|
| 69 |
+
This node is reached when the assistant has completed its task.
|
| 70 |
+
"""
|
| 71 |
+
final_answer = state["messages"][-1].content if state["messages"] else None
|
| 72 |
+
if final_answer:
|
| 73 |
+
state["final_answer"] = final_answer.split("FINAL ANSWER:")[-1].strip() #if FINAL_ANSWER isn't present we grab the whole string
|
| 74 |
+
return state
|
| 75 |
+
|
| 76 |
+
|
| 77 |
+
# The graph
|
| 78 |
+
builder = StateGraph(AgentState)
|
| 79 |
+
|
| 80 |
+
builder.add_node("assistant", assistant)
|
| 81 |
+
builder.add_edge(START, "assistant")
|
| 82 |
+
builder.add_node("tools", ToolNode(tools))
|
| 83 |
+
builder.add_node("file_path_updater_node", file_path_updater_node)
|
| 84 |
+
builder.add_node("format_final_answer_node", format_final_answer_node)
|
| 85 |
+
|
| 86 |
+
builder.add_conditional_edges(
|
| 87 |
+
"assistant",
|
| 88 |
+
tools_condition,
|
| 89 |
+
{
|
| 90 |
+
"tools": "tools",
|
| 91 |
+
"__end__": "format_final_answer_node" # This is the end node for the assistant
|
| 92 |
+
}
|
| 93 |
+
)
|
| 94 |
+
builder.add_conditional_edges(
|
| 95 |
+
"tools",
|
| 96 |
+
file_path_condition,
|
| 97 |
+
{
|
| 98 |
+
"update_file_path": "file_path_updater_node",
|
| 99 |
+
"assistant": "assistant"
|
| 100 |
+
}
|
| 101 |
+
)
|
| 102 |
+
|
| 103 |
+
builder.add_edge("file_path_updater_node", "assistant")
|
| 104 |
+
builder.add_edge("format_final_answer_node", END)
|
| 105 |
+
graph = builder.compile()
|
| 106 |
+
from IPython.display import Image, display
|
| 107 |
+
display(Image(graph.get_graph().draw_mermaid_png()))
|
| 108 |
+
return graph
|
| 109 |
+
|
| 110 |
+
class BasicAgent:
|
| 111 |
+
"""
|
| 112 |
+
A basic agent that can answer questions and download files.
|
| 113 |
+
Requires a system message be defined in 'system_prompt.txt'.
|
| 114 |
+
"""
|
| 115 |
+
def __init__(self, graph=None):
|
| 116 |
+
|
| 117 |
+
with open("system_prompt.txt", "r", encoding="utf-8") as f:
|
| 118 |
+
self.system_message = SystemMessage(content=f.read())
|
| 119 |
+
|
| 120 |
+
if graph is None:
|
| 121 |
+
self.graph = create_agent_graph()
|
| 122 |
+
else:
|
| 123 |
+
self.graph = graph
|
| 124 |
+
|
| 125 |
+
def __call__(self, question: str, file_url: Optional[str] = None, file_ext: Optional[str] = None) -> str:
|
| 126 |
+
"""
|
| 127 |
+
Call the agent with a question and optional file URL and extension.
|
| 128 |
+
|
| 129 |
+
Args:
|
| 130 |
+
question (str): The user's question.
|
| 131 |
+
file_url (Optional[str]): The URL of the file to download.
|
| 132 |
+
file_ext (Optional[str]): The file extension for the downloaded file.
|
| 133 |
+
|
| 134 |
+
Returns:
|
| 135 |
+
str: The agent's response.
|
| 136 |
+
"""
|
| 137 |
+
if file_url and file_ext:
|
| 138 |
+
question += f"\nREFERENCE FILE MUST BE RETRIEVED\nFile URL: {file_url}, File Extension: {file_ext}\nUSE A TOOL TO DOWNLOAD THIS FILE."
|
| 139 |
+
state = {
|
| 140 |
+
"messages": [self.system_message, HumanMessage(content=question)],
|
| 141 |
+
"file_url": file_url,
|
| 142 |
+
"file_ext": file_ext,
|
| 143 |
+
"local_file_path": None,
|
| 144 |
+
"final_answer": None
|
| 145 |
+
}
|
| 146 |
+
response = self.graph.invoke(state)
|
| 147 |
+
for m in response["messages"]:
|
| 148 |
+
m.pretty_print()
|
| 149 |
+
return response["final_answer"] if response["final_answer"] else "No final answer generated."
|
app.py
CHANGED
|
@@ -3,23 +3,12 @@ import gradio as gr
|
|
| 3 |
import requests
|
| 4 |
import inspect
|
| 5 |
import pandas as pd
|
|
|
|
| 6 |
|
| 7 |
# (Keep Constants as is)
|
| 8 |
# --- Constants ---
|
| 9 |
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
|
| 10 |
|
| 11 |
-
# --- Basic Agent Definition ---
|
| 12 |
-
# ----- THIS IS WERE YOU CAN BUILD WHAT YOU WANT ------
|
| 13 |
-
class BasicAgent:
|
| 14 |
-
def __init__(self):
|
| 15 |
-
print("BasicAgent initialized.")
|
| 16 |
-
def __call__(self, question: str, file_name: str | None, file_ext: str | None) -> str:
|
| 17 |
-
print(f"Agent received question (first 50 chars): {question[:50]}...")
|
| 18 |
-
if file_name:
|
| 19 |
-
print(f"\tAssociated File URL: {file_name}\tFile Extension: {file_ext}")
|
| 20 |
-
fixed_answer = "This is a default answer."
|
| 21 |
-
print(f"Agent returning fixed answer: {fixed_answer}")
|
| 22 |
-
return fixed_answer
|
| 23 |
|
| 24 |
def run_and_submit_all( profile: gr.OAuthProfile | None):
|
| 25 |
"""
|
|
@@ -83,11 +72,12 @@ def run_and_submit_all( profile: gr.OAuthProfile | None):
|
|
| 83 |
continue
|
| 84 |
file_name = item.get("file_name")
|
| 85 |
file_ext = None
|
|
|
|
| 86 |
if file_name:
|
| 87 |
file_ext = file_name.split(".")[-1]
|
| 88 |
-
|
| 89 |
try:
|
| 90 |
-
submitted_answer = agent(question_text,
|
| 91 |
answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
|
| 92 |
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer})
|
| 93 |
except Exception as e:
|
|
|
|
| 3 |
import requests
|
| 4 |
import inspect
|
| 5 |
import pandas as pd
|
| 6 |
+
from agent import BasicAgent
|
| 7 |
|
| 8 |
# (Keep Constants as is)
|
| 9 |
# --- Constants ---
|
| 10 |
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
|
| 11 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 12 |
|
| 13 |
def run_and_submit_all( profile: gr.OAuthProfile | None):
|
| 14 |
"""
|
|
|
|
| 72 |
continue
|
| 73 |
file_name = item.get("file_name")
|
| 74 |
file_ext = None
|
| 75 |
+
file_url = None
|
| 76 |
if file_name:
|
| 77 |
file_ext = file_name.split(".")[-1]
|
| 78 |
+
file_url = f"{api_url}/files/{task_id}"
|
| 79 |
try:
|
| 80 |
+
submitted_answer = agent(question_text, file_url, file_ext)
|
| 81 |
answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
|
| 82 |
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer})
|
| 83 |
except Exception as e:
|
requirements.txt
CHANGED
|
@@ -1,2 +1,12 @@
|
|
| 1 |
gradio
|
| 2 |
-
requests
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
gradio
|
| 2 |
+
requests
|
| 3 |
+
langgraph
|
| 4 |
+
langchain-core
|
| 5 |
+
langchain-community
|
| 6 |
+
langchain-openai
|
| 7 |
+
langchain-tavily
|
| 8 |
+
pydantic
|
| 9 |
+
dotenv
|
| 10 |
+
pandas
|
| 11 |
+
yt-dlp
|
| 12 |
+
beautifulsoup4
|
tools.py
ADDED
|
@@ -0,0 +1,531 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import base64
|
| 2 |
+
import io
|
| 3 |
+
import json
|
| 4 |
+
import os
|
| 5 |
+
import subprocess
|
| 6 |
+
from email.message import Message
|
| 7 |
+
from io import StringIO
|
| 8 |
+
from pathlib import Path
|
| 9 |
+
from typing import List
|
| 10 |
+
import av
|
| 11 |
+
import pandas as pd
|
| 12 |
+
import requests
|
| 13 |
+
import yt_dlp
|
| 14 |
+
from bs4 import BeautifulSoup
|
| 15 |
+
from langchain_core.messages import BaseMessage, HumanMessage, SystemMessage
|
| 16 |
+
from langchain_core.tools import tool
|
| 17 |
+
from langchain_openai import ChatOpenAI
|
| 18 |
+
from langchain_tavily import TavilyExtract, TavilySearch
|
| 19 |
+
from pydantic import SecretStr
|
| 20 |
+
|
| 21 |
+
TAVILY_API_KEY = os.getenv("TAVILY_API_KEY", "")
|
| 22 |
+
OPENROUTER_API_KEY = os.getenv("OPENROUTER_API_KEY", "")
|
| 23 |
+
YOUTUBE_FRAME_ASSESSMENT_MODEL = os.getenv("YOUTUBE_FRAME_ASSESSMENT_MODEL", "google/gemini-2.5-flash-preview-05-20")
|
| 24 |
+
YOUTUBE_CONFIRMATION_MODEL = os.getenv("YOUTUBE_CONFIRMATION_MODEL", "google/gemini-2.5-pro-preview")
|
| 25 |
+
|
| 26 |
+
# Define Tools for the Agent
|
| 27 |
+
@tool(parse_docstring=True)
|
| 28 |
+
def download_file_from_url(url: str, filename_override: str|None = None) -> str:
|
| 29 |
+
"""
|
| 30 |
+
Downloads a file from a URL to a directory in the cwd. Prefer to use the filename associated with the URL, but can override if directed to.
|
| 31 |
+
Filename Logic:
|
| 32 |
+
1. If `filename_override` is provided, it is used directly.
|
| 33 |
+
2. Otherwise, the filename is extracted from the 'Content-Disposition' HTTP header
|
| 34 |
+
using Python's `email.message.Message` parser. The result is sanitized.
|
| 35 |
+
3. If no filename is provided via override and none can be determined from
|
| 36 |
+
the header, a ValueError is raised.
|
| 37 |
+
|
| 38 |
+
Args:
|
| 39 |
+
url: The URL of the file to download.
|
| 40 |
+
filename_override: Optional. If provided, this exact name is used for the downloaded file. Using the name associated with the URL is recommended (but may require identifying the extension).
|
| 41 |
+
|
| 42 |
+
Returns:
|
| 43 |
+
The full path to the downloaded file.
|
| 44 |
+
|
| 45 |
+
Raises:
|
| 46 |
+
requests.exceptions.RequestException: For HTTP errors (e.g., 404, network issues).
|
| 47 |
+
IOError: If the file cannot be written.
|
| 48 |
+
ValueError: If no filename can be determined (neither provided via override
|
| 49 |
+
nor found in Content-Disposition header).
|
| 50 |
+
"""
|
| 51 |
+
try:
|
| 52 |
+
with requests.Session() as session:
|
| 53 |
+
with session.get(url, stream=True, allow_redirects=True, timeout=30) as response:
|
| 54 |
+
response.raise_for_status()
|
| 55 |
+
|
| 56 |
+
final_filename = None
|
| 57 |
+
|
| 58 |
+
if filename_override:
|
| 59 |
+
final_filename = filename_override
|
| 60 |
+
print(f"Using provided filename: {final_filename}")
|
| 61 |
+
else:
|
| 62 |
+
content_disposition = response.headers.get('content-disposition')
|
| 63 |
+
if content_disposition:
|
| 64 |
+
msg = Message()
|
| 65 |
+
msg['Content-Disposition'] = content_disposition
|
| 66 |
+
filename_from_header = msg.get_filename() # Handles various encodings
|
| 67 |
+
|
| 68 |
+
if filename_from_header:
|
| 69 |
+
# Sanitize by taking only the basename to prevent path traversal
|
| 70 |
+
final_filename = os.path.basename(filename_from_header)
|
| 71 |
+
print(f"Using filename from Content-Disposition: {final_filename}")
|
| 72 |
+
|
| 73 |
+
if not final_filename:
|
| 74 |
+
raise ValueError(
|
| 75 |
+
"No filename could be determined. "
|
| 76 |
+
"None was provided as an override, and it could not be "
|
| 77 |
+
"extracted from the Content-Disposition header."
|
| 78 |
+
)
|
| 79 |
+
|
| 80 |
+
current_dir = Path.cwd()
|
| 81 |
+
temp_dir = current_dir / "temp_downloads"
|
| 82 |
+
temp_dir.mkdir(parents=True, exist_ok=True)
|
| 83 |
+
|
| 84 |
+
local_filepath = os.path.join(temp_dir, final_filename)
|
| 85 |
+
|
| 86 |
+
with open(local_filepath, 'wb') as f:
|
| 87 |
+
for chunk in response.iter_content(chunk_size=8192):
|
| 88 |
+
if chunk:
|
| 89 |
+
f.write(chunk)
|
| 90 |
+
|
| 91 |
+
#print(f"File downloaded to: {local_filepath}")
|
| 92 |
+
return_str = f"File downloaded successfully. Local File Path: {local_filepath}"
|
| 93 |
+
return return_str
|
| 94 |
+
|
| 95 |
+
except requests.exceptions.RequestException as e:
|
| 96 |
+
print(f"Error during download from {url}: {e}")
|
| 97 |
+
raise
|
| 98 |
+
except IOError as e:
|
| 99 |
+
print(f"Error writing file: {e}")
|
| 100 |
+
raise
|
| 101 |
+
# ValueError will propagate if raised
|
| 102 |
+
|
| 103 |
+
@tool(parse_docstring=True)
|
| 104 |
+
def basic_web_search(query: str, search_domains: list[str]|None = None) -> str:
|
| 105 |
+
"""
|
| 106 |
+
Perform a web search using Tavily. Useful for retrieving relevant URLs and content summaries based on a search query.
|
| 107 |
+
The content returned by this tool is limited. For more detailed content extraction, use the `extract_url_content` tool.
|
| 108 |
+
If you would like to limit the search to specific domains, you can pass a comma-separated string of domains (['wikipedia.org', 'example.com']).
|
| 109 |
+
|
| 110 |
+
Args:
|
| 111 |
+
query (str): The search query to perform.
|
| 112 |
+
search_domains (None | list[str]): Optional. A list of domains (E.g., ['wikipedia.org', 'example.com']) to restrict the search to. If None, searches across all domains.
|
| 113 |
+
|
| 114 |
+
Returns:
|
| 115 |
+
str: a json formatted string containing the search results, including titles, content snippets, and URLs.
|
| 116 |
+
"""
|
| 117 |
+
search_tool = TavilySearch(
|
| 118 |
+
api_key=SecretStr(TAVILY_API_KEY),
|
| 119 |
+
max_results=5,
|
| 120 |
+
include_raw_content=False,
|
| 121 |
+
#include_answer=True,
|
| 122 |
+
include_domains=search_domains
|
| 123 |
+
)
|
| 124 |
+
|
| 125 |
+
results = search_tool.invoke({"query": query})
|
| 126 |
+
|
| 127 |
+
if results and isinstance(results, dict) and len(results["results"]) > 0:
|
| 128 |
+
return_dict = {
|
| 129 |
+
#"answer": "The following is an unconfirmed answer. Confirm it by extracting cotent from a url." + results.get("answer", ""),
|
| 130 |
+
"results": []
|
| 131 |
+
}
|
| 132 |
+
for result in results["results"]:
|
| 133 |
+
if "title" in result and "content" in result and result['score'] > 0.25: # Filter results based on score
|
| 134 |
+
return_dict["results"].append({
|
| 135 |
+
"title": result["title"],
|
| 136 |
+
"url": result["url"],
|
| 137 |
+
"content": result["content"],
|
| 138 |
+
})
|
| 139 |
+
if len(return_dict["results"]) == 0:
|
| 140 |
+
return "No results found. If the query is too specific, try a more general search term."
|
| 141 |
+
return json.dumps(return_dict, indent=2)
|
| 142 |
+
|
| 143 |
+
else:
|
| 144 |
+
return "No results found. If the query is too specific, try a more general search term."
|
| 145 |
+
|
| 146 |
+
@tool(parse_docstring=True)
|
| 147 |
+
def extract_url_content(url_list: list[str]) -> str:
|
| 148 |
+
"""
|
| 149 |
+
Extracts the content from URLs using Tavily's extract tool.
|
| 150 |
+
This tool is useful for retrieving content from web pages.
|
| 151 |
+
This tool will most likely be used after a web search to extract content from the URLs returned by the search.
|
| 152 |
+
|
| 153 |
+
Args:
|
| 154 |
+
url_list (list[str]): The URLs to extract content from.
|
| 155 |
+
|
| 156 |
+
Returns:
|
| 157 |
+
str: The extracted content or an error message if extraction fails.
|
| 158 |
+
"""
|
| 159 |
+
extract_tool = TavilyExtract(api_key=SecretStr(TAVILY_API_KEY))
|
| 160 |
+
extract_results = extract_tool.invoke({'urls': url_list})
|
| 161 |
+
|
| 162 |
+
if extract_results and 'results' in extract_results and len(extract_results['results']) > 0:
|
| 163 |
+
for i, page_content in enumerate(extract_results['results']):
|
| 164 |
+
del extract_results['results'][i]['images']
|
| 165 |
+
if len(page_content['raw_content']) > 40000:
|
| 166 |
+
extract_results['results'][i]['raw_content'] = page_content['raw_content'][:40000] + '... [truncated]'
|
| 167 |
+
return json.dumps(extract_results['results'], indent=2)
|
| 168 |
+
else:
|
| 169 |
+
return f"No content could be extracted from the provided URLs: {url_list}"
|
| 170 |
+
|
| 171 |
+
|
| 172 |
+
|
| 173 |
+
def bs_html_parser(url):
|
| 174 |
+
response = requests.get(url) # Send a GET request to the URL
|
| 175 |
+
|
| 176 |
+
# Check if the request was successful
|
| 177 |
+
if response.status_code == 200:
|
| 178 |
+
return BeautifulSoup(response.text, "html.parser") # Parse and return the HTML
|
| 179 |
+
else:
|
| 180 |
+
return None # Return None if the request fails
|
| 181 |
+
|
| 182 |
+
def get_table_title(table_tag):
|
| 183 |
+
"""
|
| 184 |
+
Extracts a title for a given table tag.
|
| 185 |
+
It looks for a <caption>, then for the closest preceding <h1>-<h6> tag.
|
| 186 |
+
"""
|
| 187 |
+
title = "Untitled Table"
|
| 188 |
+
|
| 189 |
+
# 1. Check for a <caption> element within the table
|
| 190 |
+
caption = table_tag.find('caption')
|
| 191 |
+
if caption:
|
| 192 |
+
caption_text = caption.get_text(strip=True)
|
| 193 |
+
if caption_text: # Ensure caption is not empty and use it
|
| 194 |
+
return caption_text
|
| 195 |
+
|
| 196 |
+
# 2. If no caption, look for the closest preceding heading tag (h1-h6)
|
| 197 |
+
headings = ['h1', 'h2', 'h3', 'h4', 'h5', 'h6']
|
| 198 |
+
# find_all_previous gets all previous tags matching criteria, in reverse document order.
|
| 199 |
+
# limit=1 gets the closest one (the last one encountered before the table).
|
| 200 |
+
preceding_headings = table_tag.find_all_previous(headings, limit=1)
|
| 201 |
+
|
| 202 |
+
if preceding_headings:
|
| 203 |
+
heading_tag = preceding_headings[0]
|
| 204 |
+
|
| 205 |
+
# To get the cleanest text, prefer 'mw-headline' if it exists,
|
| 206 |
+
# otherwise, clone the heading, remove edit sections, and then get text.
|
| 207 |
+
|
| 208 |
+
# Try to find a specific 'mw-headline' span first (common in Wikipedia)
|
| 209 |
+
headline_span = heading_tag.find("span", class_="mw-headline")
|
| 210 |
+
if headline_span:
|
| 211 |
+
title_text = headline_span.get_text(strip=True)
|
| 212 |
+
else:
|
| 213 |
+
# Fallback: create a temporary copy of the heading tag to modify it
|
| 214 |
+
# without affecting the main soup.
|
| 215 |
+
temp_heading_soup = BeautifulSoup(str(heading_tag), 'html.parser')
|
| 216 |
+
temp_heading_tag = temp_heading_soup.find(heading_tag.name)
|
| 217 |
+
|
| 218 |
+
if temp_heading_tag:
|
| 219 |
+
# Remove "edit" links (span with class "mw-editsection")
|
| 220 |
+
for span in temp_heading_tag.find_all("span", class_="mw-editsection"):
|
| 221 |
+
span.decompose()
|
| 222 |
+
title_text = temp_heading_tag.get_text(strip=True)
|
| 223 |
+
else:
|
| 224 |
+
# If cloning somehow failed, take raw text (less ideal)
|
| 225 |
+
title_text = heading_tag.get_text(strip=True)
|
| 226 |
+
|
| 227 |
+
if title_text: # Ensure title_text is not empty
|
| 228 |
+
title = title_text
|
| 229 |
+
|
| 230 |
+
return title
|
| 231 |
+
|
| 232 |
+
@tool(parse_docstring=True)
|
| 233 |
+
def wikipedia_reader(url: str) -> str:
|
| 234 |
+
"""
|
| 235 |
+
Extracts sections, paragraphs, and tables from a Wikipedia page.
|
| 236 |
+
|
| 237 |
+
Args:
|
| 238 |
+
url (str): The URL of the Wikipedia page to extract content from.
|
| 239 |
+
|
| 240 |
+
Returns:
|
| 241 |
+
str: A JSON string containing sections, paragraphs, and tables.
|
| 242 |
+
"""
|
| 243 |
+
soup = bs_html_parser(url)
|
| 244 |
+
if not soup:
|
| 245 |
+
return "" # Return empty if soup creation failed
|
| 246 |
+
|
| 247 |
+
def extract_links(soup_obj):
|
| 248 |
+
links = []
|
| 249 |
+
for link in soup_obj.find_all('a', href=True):
|
| 250 |
+
href = link.get('href')
|
| 251 |
+
# Filter for internal page links (sections)
|
| 252 |
+
if href and href.startswith("#") and "#cite_" not in href and len(href) > 1:
|
| 253 |
+
links.append(url+href)
|
| 254 |
+
# Original logic for other links starting with the base URL (might need adjustment based on desired links)
|
| 255 |
+
# elif href and href.startswith(url):
|
| 256 |
+
# links.append(href)
|
| 257 |
+
return links
|
| 258 |
+
|
| 259 |
+
links = extract_links(soup)
|
| 260 |
+
|
| 261 |
+
def extract_paragraphs(soup_obj):
|
| 262 |
+
paragraphs_text = [p.get_text(strip=True) for p in soup_obj.find_all("p")]
|
| 263 |
+
return [p for p in paragraphs_text if p and len(p) > 10]
|
| 264 |
+
|
| 265 |
+
paragraphs = extract_paragraphs(soup)
|
| 266 |
+
|
| 267 |
+
def extract_tables(soup_obj):
|
| 268 |
+
tables_with_titles = []
|
| 269 |
+
for table_tag in soup_obj.find_all("table", {"class": "wikitable"}):
|
| 270 |
+
title = get_table_title(table_tag) # Get the title
|
| 271 |
+
try:
|
| 272 |
+
# Pandas read_html expects a string or file-like object
|
| 273 |
+
table_html_str = str(table_tag)
|
| 274 |
+
# Using StringIO to simulate a file, as read_html can be sensitive
|
| 275 |
+
df_list = pd.read_html(StringIO(table_html_str))
|
| 276 |
+
if df_list:
|
| 277 |
+
df = df_list[0] # read_html returns a list of DataFrames
|
| 278 |
+
tables_with_titles.append({"title": title, "table_data": df.to_dict(orient='records')})
|
| 279 |
+
else:
|
| 280 |
+
tables_with_titles.append({"title": title, "table_data": None, "error": "pd.read_html returned empty list"})
|
| 281 |
+
except Exception as e:
|
| 282 |
+
|
| 283 |
+
tables_with_titles.append({"title": title, "table_data" : None, "error": str(e)})
|
| 284 |
+
return tables_with_titles
|
| 285 |
+
|
| 286 |
+
tables = extract_tables(soup) # This now returns a list of dicts
|
| 287 |
+
|
| 288 |
+
return_dict = {
|
| 289 |
+
"sections": links,
|
| 290 |
+
"paragraphs": paragraphs,
|
| 291 |
+
"tables": tables
|
| 292 |
+
}
|
| 293 |
+
|
| 294 |
+
return json.dumps(return_dict, indent=2, ensure_ascii=False) # Return as JSON string
|
| 295 |
+
|
| 296 |
+
|
| 297 |
+
# Singleton class for Whisper model
|
| 298 |
+
# we use this so we don't have to load the model multiple times, just once the first time the tool is used
|
| 299 |
+
class WhisperTranscriber:
|
| 300 |
+
_instance = None
|
| 301 |
+
|
| 302 |
+
def __new__(cls):
|
| 303 |
+
if cls._instance is None:
|
| 304 |
+
import torch
|
| 305 |
+
from transformers import AutoModelForSpeechSeq2Seq, AutoProcessor
|
| 306 |
+
from transformers.pipelines import pipeline
|
| 307 |
+
|
| 308 |
+
device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
| 309 |
+
torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32
|
| 310 |
+
model_id = "openai/whisper-large-v3"
|
| 311 |
+
|
| 312 |
+
model = AutoModelForSpeechSeq2Seq.from_pretrained(
|
| 313 |
+
model_id, torch_dtype=torch_dtype, low_cpu_mem_usage=True, use_safetensors=True
|
| 314 |
+
)
|
| 315 |
+
model.to(device)
|
| 316 |
+
|
| 317 |
+
processor = AutoProcessor.from_pretrained(model_id)
|
| 318 |
+
pipe = pipeline(
|
| 319 |
+
"automatic-speech-recognition",
|
| 320 |
+
model=model,
|
| 321 |
+
tokenizer=processor.tokenizer,
|
| 322 |
+
feature_extractor=processor.feature_extractor,
|
| 323 |
+
torch_dtype=torch_dtype,
|
| 324 |
+
device=device,
|
| 325 |
+
)
|
| 326 |
+
|
| 327 |
+
cls._instance = pipe
|
| 328 |
+
return cls._instance
|
| 329 |
+
|
| 330 |
+
|
| 331 |
+
@tool(parse_docstring=True)
|
| 332 |
+
def transcribe_audio_file(file_path: str) -> str:
|
| 333 |
+
"""
|
| 334 |
+
Transcribes an audio file to text using OpenAI's Whisper-large-v3 model, caching the model after the first load.
|
| 335 |
+
|
| 336 |
+
Args:
|
| 337 |
+
file_path (str): The path to the audio file to transcribe.
|
| 338 |
+
|
| 339 |
+
Returns:
|
| 340 |
+
str: The transcription of the audio file.
|
| 341 |
+
"""
|
| 342 |
+
pipe = WhisperTranscriber()
|
| 343 |
+
transcription = pipe(file_path)["text"]
|
| 344 |
+
return transcription.strip() if transcription else "No transcription available."
|
| 345 |
+
|
| 346 |
+
|
| 347 |
+
@tool(parse_docstring=True)
|
| 348 |
+
def question_youtube_video(video_url: str, query: str) -> str:
|
| 349 |
+
"""
|
| 350 |
+
Returns an answer to a question about a YouTube video.
|
| 351 |
+
The video is streamed and one frame is captured every `capture_interval_sec` seconds.
|
| 352 |
+
These frames are sent sequentially to a multimodal model to answer the question about the video.
|
| 353 |
+
The final answer is aggregated from the answers to each frame.
|
| 354 |
+
|
| 355 |
+
Args:
|
| 356 |
+
video_url (str): The URL of the video to capture frames from.
|
| 357 |
+
query (str): The question to answer about the video.
|
| 358 |
+
|
| 359 |
+
Returns:
|
| 360 |
+
str: The answer to the question about the video.
|
| 361 |
+
"""
|
| 362 |
+
CAPTURE_INTERVAL_SEC = int(os.getenv("CAPTURE_INTERVAL_SEC", 2)) # Default to 2 seconds if not set
|
| 363 |
+
|
| 364 |
+
# First, we need to get the video stream URL using yt-dlp
|
| 365 |
+
ydl_opts = {
|
| 366 |
+
"quiet": True,
|
| 367 |
+
"skip_download": True,
|
| 368 |
+
"format": "mp4[ext=mp4]+bestaudio/best",
|
| 369 |
+
"forceurl": True,
|
| 370 |
+
"noplaylist": True,
|
| 371 |
+
"writesubtitles": True,
|
| 372 |
+
"writeautomaticsub": True,
|
| 373 |
+
"subtitlesformat": "vtt",
|
| 374 |
+
"subtitleslangs": ['en'],
|
| 375 |
+
}
|
| 376 |
+
|
| 377 |
+
with yt_dlp.YoutubeDL(ydl_opts) as ydl:
|
| 378 |
+
info_dict = ydl.extract_info(video_url, download=False)
|
| 379 |
+
assert isinstance(info_dict, dict), "Failed to extract video information. Please check the video URL."
|
| 380 |
+
stream_url = info_dict.get("url", None)
|
| 381 |
+
|
| 382 |
+
# Second, we use FFmpeg to capture frames from the video stream
|
| 383 |
+
ffmpeg_cmd = [
|
| 384 |
+
"ffmpeg",
|
| 385 |
+
"-i",
|
| 386 |
+
stream_url,
|
| 387 |
+
"-f",
|
| 388 |
+
"matroska", # container format
|
| 389 |
+
"-",
|
| 390 |
+
]
|
| 391 |
+
|
| 392 |
+
process = subprocess.Popen(
|
| 393 |
+
ffmpeg_cmd, stdout=subprocess.PIPE, stderr=subprocess.PIPE
|
| 394 |
+
)
|
| 395 |
+
|
| 396 |
+
container = av.open(process.stdout)
|
| 397 |
+
stream = container.streams.video[0]
|
| 398 |
+
time_base = stream.time_base
|
| 399 |
+
if time_base is None:
|
| 400 |
+
raise ValueError("Could not determine time base for the video stream. Please check the video URL and try again.")
|
| 401 |
+
else:
|
| 402 |
+
time_base = float(time_base)
|
| 403 |
+
|
| 404 |
+
# Third, we need to use a multimodal model to analyze the video frames.
|
| 405 |
+
if stream_url is None:
|
| 406 |
+
raise ValueError("Could not retrieve video stream URL. Please check the video URL and try again.")
|
| 407 |
+
else:
|
| 408 |
+
image_model = ChatOpenAI(
|
| 409 |
+
model="google/gemini-2.5-flash-preview-05-20", # Example multimodal model
|
| 410 |
+
api_key=SecretStr(OPENROUTER_API_KEY), # Your OpenRouter API key
|
| 411 |
+
base_url="https://openrouter.ai/api/v1", # Standard OpenRouter API base
|
| 412 |
+
verbose=True # Optional: for debugging
|
| 413 |
+
)
|
| 414 |
+
image_model_system_prompt = SystemMessage(
|
| 415 |
+
content="You will be shown a frame from a video along with a question about that video and an answer based on the previous frames in the video. "\
|
| 416 |
+
"Your task is to analyze the frame and provide an answer to the question using both the current frame and the previous answer. " \
|
| 417 |
+
"If the previous answer is reasonable and the current frame can not answer the question return the previous answer. " \
|
| 418 |
+
"For example, if the question is about the color of a car and the previous answer is 'red' but the current frame shows no car, you should return 'red'. " \
|
| 419 |
+
"If the question is about the greatest number of something in the video, you should return the number counted in the current frame or the previous answer, whichever is greater. " \
|
| 420 |
+
"For example, if the current frame has 5 objects but the previous answer is 10 objects, you should return '10'. " \
|
| 421 |
+
"Be concise and clear in your answers, and do not repeat the question. " \
|
| 422 |
+
)
|
| 423 |
+
|
| 424 |
+
|
| 425 |
+
# Then, we loop through the frames and analyze them one by one, skipping frames based on the capture interval
|
| 426 |
+
next_capture_time = 0
|
| 427 |
+
aggregated_answer = ''
|
| 428 |
+
response = ''
|
| 429 |
+
|
| 430 |
+
answers_list: List[dict] = []
|
| 431 |
+
|
| 432 |
+
for frame in container.decode(stream):
|
| 433 |
+
if frame.pts is None:
|
| 434 |
+
continue
|
| 435 |
+
|
| 436 |
+
timestamp = float(frame.pts * time_base)
|
| 437 |
+
if CAPTURE_INTERVAL_SEC is None or timestamp >= next_capture_time:
|
| 438 |
+
# Convert the frame to an image format that the model can process
|
| 439 |
+
buf = io.BytesIO()
|
| 440 |
+
img = frame.to_image()
|
| 441 |
+
img.save(buf, format="JPEG") # using PIL.Image.save
|
| 442 |
+
jpeg_bytes = buf.getvalue()
|
| 443 |
+
frame_base64 = base64.b64encode(jpeg_bytes).decode("utf-8")
|
| 444 |
+
|
| 445 |
+
# Explicitly type the list to hold instances of BaseMessage
|
| 446 |
+
msgs: List[BaseMessage] = [image_model_system_prompt]
|
| 447 |
+
|
| 448 |
+
frame_query = query
|
| 449 |
+
|
| 450 |
+
if aggregated_answer:
|
| 451 |
+
frame_query += f"\nPrevious Answer: {aggregated_answer}"
|
| 452 |
+
frame_query += "\nProvide a concise answer based on the previous answer and the current frame. " \
|
| 453 |
+
"If the current frame does not answer the question but there is a previous answer, return the previous answer. " \
|
| 454 |
+
"REMEMBER: This question is not about the current frame! It is about the video as a whole. ALWAYS PAY ATTENTION TO THE PREVIOUS ANSWER!"
|
| 455 |
+
|
| 456 |
+
msgs.append(HumanMessage(content = [
|
| 457 |
+
{
|
| 458 |
+
"type": "text",
|
| 459 |
+
"text": frame_query
|
| 460 |
+
},
|
| 461 |
+
{
|
| 462 |
+
"type": "image",
|
| 463 |
+
"source_type": "base64",
|
| 464 |
+
"mime_type": "image/jpeg",
|
| 465 |
+
"data": frame_base64
|
| 466 |
+
}
|
| 467 |
+
]))
|
| 468 |
+
|
| 469 |
+
response = image_model.invoke(msgs) # Pass the image bytes to the model
|
| 470 |
+
# Extract the answer from the model's response
|
| 471 |
+
assert isinstance(response.content, str), "The model's response should be a string."
|
| 472 |
+
answer = response.content.strip()
|
| 473 |
+
answers_list.append({"timestamp": timestamp, "answer": answer})
|
| 474 |
+
if answer:
|
| 475 |
+
aggregated_answer = answer
|
| 476 |
+
if CAPTURE_INTERVAL_SEC is not None:
|
| 477 |
+
next_capture_time += CAPTURE_INTERVAL_SEC
|
| 478 |
+
|
| 479 |
+
process.terminate()
|
| 480 |
+
|
| 481 |
+
final_answer_model = ChatOpenAI(
|
| 482 |
+
model="google/gemini-2.5-pro-preview", # Example multimodal model
|
| 483 |
+
api_key=SecretStr(OPENROUTER_API_KEY), # Your OpenRouter API key
|
| 484 |
+
base_url="https://openrouter.ai/api/v1", # Standard OpenRouter API base
|
| 485 |
+
verbose=True # Optional: for debugging
|
| 486 |
+
)
|
| 487 |
+
|
| 488 |
+
final_answer_system_message = SystemMessage(
|
| 489 |
+
"You are a brilliant assistant who is eager to help and extremely detailed oriented. " \
|
| 490 |
+
"A group of individuals have been asked the same question about a video. " \
|
| 491 |
+
"None of the individuals have seen the entire video. " \
|
| 492 |
+
"Each individual, when asked the question, was provided a frame from the video, as well as the previously reported answer based on the previous frame. " \
|
| 493 |
+
"Your job is to report a final answer for the question about the video. " \
|
| 494 |
+
"Ideally, the final answer has already been reported correctly by the last individual. " \
|
| 495 |
+
"However, this is similar to the game a telephone, where the true answer can become corrupted along the way. " \
|
| 496 |
+
"Assess all of the answers. If you can confirm the final answer is correct, simply return it. " \
|
| 497 |
+
"If you notice that the final answer is incorrect, then identify the correct answer and report that. " \
|
| 498 |
+
"You will also have access to the video title and description, which may help you identify the correct answer. " \
|
| 499 |
+
"Be concise and only respond with the correct final answer!"
|
| 500 |
+
)
|
| 501 |
+
|
| 502 |
+
answers_list_str = "\n".join([f"Answer {i+1} at {ans['timestamp']:.2f}s: {ans['answer']}" for i, ans in enumerate(answers_list)])
|
| 503 |
+
|
| 504 |
+
final_query = (
|
| 505 |
+
f"Video Title: {info_dict.get('title', 'No title found')}. "
|
| 506 |
+
f"Video Description: {info_dict.get('description', 'No description found')}. "
|
| 507 |
+
f"Question about video: {query} "
|
| 508 |
+
f"Answers provided by individuals: \n{answers_list_str}\n\n "
|
| 509 |
+
"Provide a concise final answer to the question about the video based on the previous answers. "
|
| 510 |
+
"Include a short explanation of why you chose this answer. "
|
| 511 |
+
"Format the answer like so: "
|
| 512 |
+
"Explanation: <your explanation here>. "
|
| 513 |
+
"Final Answer: <your answer here>. "
|
| 514 |
+
)
|
| 515 |
+
|
| 516 |
+
|
| 517 |
+
final_msgs = [
|
| 518 |
+
final_answer_system_message,
|
| 519 |
+
HumanMessage(content=[
|
| 520 |
+
{
|
| 521 |
+
"type": "text",
|
| 522 |
+
"text": final_query
|
| 523 |
+
}
|
| 524 |
+
])
|
| 525 |
+
]
|
| 526 |
+
final_response = final_answer_model.invoke(final_msgs)
|
| 527 |
+
assert isinstance(final_response.content, str), "The final model's response should be a string."
|
| 528 |
+
final_answer = final_response.content.strip()
|
| 529 |
+
|
| 530 |
+
return final_answer
|
| 531 |
+
|