File size: 8,154 Bytes
3ed0796
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
# Copyright (c) 2023-2024, NVIDIA CORPORATION.  All rights reserved.
#
# NVIDIA CORPORATION and its licensors retain all intellectual property
# and proprietary rights in and to this software, related documentation
# and any modifications thereto.  Any use, reproduction, disclosure or
# distribution of this software and related documentation without an express
# license agreement from NVIDIA CORPORATION is strictly prohibited.

from typing import List, Optional, Set, Tuple, Union
from types import MethodType

import torch
from torch import nn

from timm.models import VisionTransformer, checkpoint_seq
from timm.models.vision_transformer import Attention, Block

from .feature_normalizer import IntermediateFeatureNormalizerBase, NullIntermediateFeatureNormalizer

from .extra_models import DinoWrapper
from .vit_patch_generator import ViTPatchGenerator
from .forward_intermediates import forward_intermediates
from .dual_hybrid_vit import HybridModel
from flash_attn import flash_attn_varlen_func


def _attn_forward_pack(self: Attention, x: torch.Tensor, cu_seqlens: torch.Tensor) -> torch.Tensor:
    N, C = x.shape
    qkv = self.qkv(x).reshape(N, 3, self.num_heads, self.head_dim).permute(1, 0, 2, 3)
    q, k, v = qkv.unbind(0)
    q, k = self.q_norm(q), self.k_norm(k)
    max_seqlen = (cu_seqlens[1:] - cu_seqlens[:-1]).max().item()

    x = flash_attn_varlen_func(
        q, k, v, cu_seqlens, cu_seqlens, max_seqlen, max_seqlen
    ).reshape(N, -1)

    x = self.proj(x)
    x = self.proj_drop(x)
    return x

def _block_forward_pack(self: Block, x: torch.Tensor, cu_seqlens: torch.Tensor) -> torch.Tensor:
    x = x + self.drop_path1(self.ls1(self.attn(self.norm1(x), cu_seqlens)))
    x = x + self.drop_path2(self.ls2(self.mlp(self.norm2(x))))
    return x

def _forward_cpe_pack(self: VisionTransformer, images: List[torch.Tensor]) -> torch.Tensor:
    device = images[0].device
    x = []
    seqlens = []
    for image in images:
        # image: [1, c, H, W] -> x: [n_cls+h*w, D], h=H/p and w=W/p
        _image = self.patch_generator(image).squeeze(0)
        x.append(_image)
        seqlens.append(_image.shape[0])
    
    x = torch.cat(x, dim=0)
    seqlens = torch.tensor(seqlens, device=device, dtype=torch.int)
    
    cu_seqlens = torch.cat([
        torch.tensor([0], device=device, dtype=torch.int32), 
        torch.cumsum(seqlens, dim=0, dtype=torch.int32)
    ])
    if getattr(self, 'grad_checkpointing', False) and not torch.jit.is_scripting():
        for block in self.blocks:
            x = checkpoint_seq(block, x, cu_seqlens)
    else:
        for block in self.blocks:
            x = block(x, cu_seqlens)
    x = self.norm(x)
    return x, cu_seqlens

def _forward_cpe(self: VisionTransformer, x: torch.Tensor) -> torch.Tensor:
    x = self.patch_generator(x)
    if getattr(self, 'grad_checkpointing', False) and not torch.jit.is_scripting():
        x = checkpoint_seq(self.blocks, x)
    else:
        x = self.blocks(x)
    x = self.norm(x)
    return x


def _take_indices(
        num_blocks: int,
        n: Optional[Union[int, List[int], Tuple[int]]],
) -> Tuple[Set[int], int]:
    if isinstance(n, int):
        assert n >= 0
        take_indices = {x for x in range(num_blocks - n, num_blocks)}
    else:
        take_indices = {num_blocks + idx if idx < 0 else idx for idx in n}
    return take_indices, max(take_indices)


def _forward_intermediates_cpe(
        self,
        x: torch.Tensor,
        norm: bool = False,
        **kwargs,
) -> Union[List[torch.Tensor], Tuple[torch.Tensor, List[torch.Tensor]]]:
    return forward_intermediates(
        self,
        patch_extractor=self.patch_generator,
        num_summary_tokens=self.patch_generator.num_skip,
        num_cls_tokens=self.patch_generator.num_cls_tokens,
        norm=self.norm if norm else lambda y: y,
        x=x,
        **kwargs,
    )


def _forward_cpe_dinov2(self: DinoWrapper, x: torch.Tensor) -> torch.Tensor:
    y = _forward_cpe(self.inner, x)

    return y[:, 0], y[:, self.num_summary_tokens:]


def _forward_intermediates_cpe_dinov2(self: DinoWrapper, *args, **kwargs):
    return _forward_intermediates_cpe(self.inner, *args, **kwargs)


def _enable_cpe_for_timm_vit(model: VisionTransformer,
                             max_img_size: Union[int, Tuple[int, int]] = 1024,
                             num_cls_tokens: int = 1,
                             pos_dropout: float = 0.1,
                             register_multiple: int = Optional[None],
                             num_registers: int = Optional[None],
                             support_packing: bool = False,
):
    if not isinstance(model, VisionTransformer):
        raise ValueError("CPE only support for VisionTransformer models!")

    patch_size = model.patch_embed.patch_size[0]
    embed_dim = model.embed_dim
    input_dims = model.patch_embed.img_size
    normalize_patches = not isinstance(model.patch_embed.norm, nn.Identity)
    cls_token = model.cls_token is not None

    max_img_size = int(round(max_img_size / patch_size) * patch_size)

    patch_generator = ViTPatchGenerator(
        patch_size=patch_size,
        embed_dim=embed_dim,
        input_dims=input_dims,
        normalize_patches=normalize_patches,
        cls_token=cls_token,
        max_input_dims=max_img_size,
        pos_dropout=pos_dropout,
        num_cls_tokens=num_cls_tokens,
        register_multiple=register_multiple,
        num_registers=num_registers,
    )

    model.patch_generator = patch_generator
    model.patch_embed = None
    model.cls_token = None
    model.pos_embed = None
    model.pos_drop = None
    model.patch_size = patch_size
    model.num_cls_tokens = num_cls_tokens
    model.num_registers = patch_generator.num_registers

    model.forward_features = MethodType(_forward_cpe, model)
    model.forward_intermediates = MethodType(_forward_intermediates_cpe, model)
    if support_packing:
        model.forward_features = MethodType(_forward_cpe_pack, model)
        for block in model.blocks:
            block.forward = MethodType(_block_forward_pack, block)
            block.attn.forward = MethodType(_attn_forward_pack, block.attn)


def _enable_cpe_for_dv2_reg_vit(model: DinoWrapper,
                                max_img_size: Union[int, Tuple[int, int]] = 1024,
                                num_cls_tokens: int = 1,
                                pos_dropout: float = 0.1,
                                register_multiple: int = Optional[None],
                                num_registers: int = Optional[None],
):
    patch_size = model.patch_size
    embed_dim = model.embed_dim
    input_dims = model.inner.patch_embed.patches_resolution
    normalize_patches = not isinstance(model.inner.patch_embed.norm, nn.Identity)
    cls_token = True

    max_img_size = int(round(max_img_size / patch_size) * patch_size)

    patch_generator = ViTPatchGenerator(
        patch_size=patch_size,
        embed_dim=embed_dim,
        input_dims=input_dims,
        normalize_patches=normalize_patches,
        cls_token=cls_token,
        max_input_dims=max_img_size,
        pos_dropout=pos_dropout,
        num_cls_tokens=num_cls_tokens,
        register_multiple=register_multiple,
        num_registers=num_registers,
        patch_bias=True,
    )

    inner = model.inner
    inner.patch_generator = patch_generator
    inner.patch_embed = None
    inner.cls_token = None
    inner.pos_embed = None
    inner.register_tokens = None
    inner.patch_size = patch_size

    model.forward_features = MethodType(_forward_cpe_dinov2, model)
    model.forward_intermediates = MethodType(_forward_intermediates_cpe_dinov2, model)


def enable_cpe(model: nn.Module,
               *args,
               **kwargs,
):
    if isinstance(model, VisionTransformer):
        _enable_cpe_for_timm_vit(model, *args, **kwargs)
    elif isinstance(model, DinoWrapper):
        _enable_cpe_for_dv2_reg_vit(model, *args, **kwargs)
    elif isinstance(model, HybridModel):
        _enable_cpe_for_timm_vit(model.vit, *args, **kwargs)
    else:
        raise ValueError(f'CPE not supported for this model type: {type(model)}')