File size: 12,026 Bytes
3ed0796
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
from typing import Callable
import torch
import torch.nn.functional as F
from copy import deepcopy
from .transports import Transport
from tim.models.utils.funcs import expand_t_like_x


def mean_flat(x):
    """
    Take the mean over all non-batch dimensions.
    """
    return torch.mean(x, dim=list(range(1, len(x.size()))))


def sum_flat(x):
    """
    Take the mean over all non-batch dimensions.
    """
    return torch.sum(x, dim=list(range(1, len(x.size()))))


class TransitionSchedule:
    def __init__(
        self,
        transport: Transport,
        diffusion_ratio: float = 0.0,
        consistency_ratio: float = 0.0,
        derivative_type: str = "dde",
        differential_epsilon: float = 0.005,
        weight_t_and_r: bool = True,
        weight_time_type: str = "constant",
        weight_time_tangent: bool = False,
        weight_time_sigmoid: bool = False,
    ):
        self.transport = transport
        self.diffusion_ratio = diffusion_ratio
        self.consistency_ratio = consistency_ratio
        self.derivative_type = derivative_type
        self.differential_epsilon = differential_epsilon
        self.weight_t_and_r = weight_t_and_r
        self.weight_time_type = weight_time_type
        self.weight_time_tangent = weight_time_tangent
        self.weight_time_sigmoid = weight_time_sigmoid

    def sample_t_and_r(self, batch_size, dtype, device):
        t_1 = self.transport.sample_t(batch_size=batch_size, dtype=dtype, device=device)
        t_2 = self.transport.sample_t(batch_size=batch_size, dtype=dtype, device=device)
        # t is the larger one, and r is the smaller one
        t = torch.maximum(t_1, t_2)
        r = torch.minimum(t_1, t_2)
        # some samples with t=r, corresponding to diffusion training
        n_diffusion = round(self.diffusion_ratio * len(t))
        r[:n_diffusion] = t[:n_diffusion]
        # some samples with r=0, corresponding to consistency training
        n_consistency = round(self.consistency_ratio * len(t))
        if n_consistency != 0:
            r[-n_consistency:] = self.transport.T_min
        return t, r, n_diffusion

    def prepare_input(self, batch_size, x, z):
        # sample timestep according to log-normal distribution of sigmas following EDM
        t, r, n_diffusion = self.sample_t_and_r(
            batch_size=batch_size, dtype=x.dtype, device=x.device
        )
        # reshape (B, ) -> (B, 1, 1, 1)
        t, r = expand_t_like_x(t, x), expand_t_like_x(r, x)
        # prepere inputs
        alpha_t, sigma_t, d_alpha_t, d_sigma_t = self.transport.interpolant(t)
        x_t = alpha_t * x + sigma_t * z
        v_t = d_alpha_t * x + d_sigma_t * z
        return x_t, v_t, t, r, n_diffusion

    def model_forward(self, model, x_t, t, r, model_kwargs, rng_state):
        # model_input
        t_input = self.transport.c_noise(t.flatten())
        r_input = self.transport.c_noise(r.flatten())
        # model_output
        torch.cuda.set_rng_state(rng_state)
        model_output = model(x_t, t_input, r_input, **model_kwargs)
        return model_output

    @torch.no_grad()
    def jvp_derivative(
        self, model, x_t, v_t, t, r, model_kwargs, rng_state, n_diffusion
    ):
        if n_diffusion == x_t.size(0):
            return 0
        _dF_dv_dt = torch.zeros_like(x_t)
        # only calculate the dF_dv_dt when t!=r
        x_t, v_t, t, r = (
            x_t[n_diffusion:],
            v_t[n_diffusion:],
            t[n_diffusion:],
            r[n_diffusion:],
        )
        for k, v in model_kwargs.items():
            if type(v) == torch.Tensor:
                model_kwargs[k] = model_kwargs[k][n_diffusion:]
        model_kwargs["return_zs"] = False

        def model_jvp(x_t, t, r):
            model_kwargs["attn_type"] = "vanilla_attn"
            model_kwargs["jvp"] = True
            t_input = self.transport.c_noise(t.flatten())
            r_input = self.transport.c_noise(r.flatten())
            return model(x_t, t_input, r_input, **model_kwargs)

        torch.cuda.set_rng_state(rng_state)
        F_pred, dF_dv_dt = torch.func.jvp(
            lambda x_t, t, r: model_jvp(x_t, t, r),
            (x_t, t, r),
            (v_t, torch.ones_like(t), torch.zeros_like(r)),
        )
        _dF_dv_dt[n_diffusion:] = dF_dv_dt
        return _dF_dv_dt

    @torch.no_grad()
    def dde_derivative(self, model, x, z, t, r, model_kwargs, rng_state, n_diffusion):
        if n_diffusion == x.size(0):
            return 0
        _dF_dv_dt = torch.zeros_like(x)
        # only calculate the dF_dv_dt when t!=r
        x, z, t, r = x[n_diffusion:], z[n_diffusion:], t[n_diffusion:], r[n_diffusion:]
        for k, v in model_kwargs.items():
            if type(v) == torch.Tensor:
                model_kwargs[k] = model_kwargs[k][n_diffusion:]
        model_kwargs["return_zs"] = False
        model_kwargs["jvp"] = True

        def xfunc(t):
            alpha_t, sigma_t, _, _ = self.transport.interpolant(t)
            x_t = alpha_t * x + sigma_t * z
            return self.model_forward(model, x_t, t, r, model_kwargs, rng_state)

        epsilon = self.differential_epsilon
        fc1_dt = 1 / (2 * epsilon)
        dF_dv_dt = xfunc(t + epsilon) * fc1_dt - xfunc(t - epsilon) * fc1_dt
        _dF_dv_dt[n_diffusion:] = dF_dv_dt
        return _dF_dv_dt

    def get_enhanced_target(self, model, x_t, t, model_kwargs, null_kwargs, rng_state):
        with torch.no_grad():
            t_input = self.transport.c_noise(t.flatten())
            if self.transport.w_cond > 0:
                F_t_cond = self.model_forward(
                    model, x_t, t_input, t_input, model_kwargs, rng_state
                )
            else:
                F_t_cond = 0
            F_t_uncond = self.model_forward(
                model, x_t, t_input, t_input, null_kwargs, rng_state
            )
        return F_t_cond, F_t_uncond

    def time_weighting(self, t, r, n_diffusion):
        if self.weight_time_tangent:
            t, r = torch.tan(t), torch.tan(r)
        elif self.weight_time_sigmoid:
            t, r = t / (1 - t), r / (1 - r)
        if self.weight_t_and_r:
            delta_t = (t - r).flatten()
        else:
            delta_t = t.flatten()
        if self.weight_time_type == "constant":
            weight = torch.ones_like(delta_t)
        elif self.weight_time_type == "reciprocal":
            weight = 1 / (delta_t + self.transport.sigma_d)
        elif self.weight_time_type == "sqrt":
            weight = 1 / (delta_t + self.transport.sigma_d).sqrt()
        elif self.weight_time_type == "square":
            weight = 1 / (delta_t + self.transport.sigma_d) ** 2
        elif self.weight_time_type == "Soft-Min-SNR":
            weight = 1 / (delta_t**2 + self.transport.sigma_d**2)
        else:
            raise NotImplementedError
        weight[:n_diffusion] = 1.0
        return weight

    def adaptive_weighting(self, loss, eps=10e-6):
        weight = 1 / (loss.detach() + eps)
        return weight

    def __call__(
        self,
        model,
        ema_model,
        unwrapped_model,
        batch_size,
        x,
        z,
        model_kwargs,
        use_dir_loss=False,
        h_target=None,
        ema_kwargs={},
        null_kwargs={},
    ):
        # prepare model input
        x_t, v_t, t, r, n_diffusion = self.prepare_input(batch_size, x, z)

        rng_state = torch.cuda.get_rng_state()
        # get prediction
        F_pred, h_proj = self.model_forward(model, x_t, t, r, model_kwargs, rng_state)
        # get target
        if self.derivative_type == "jvp":
            dF_dv_dt = self.jvp_derivative(
                unwrapped_model, x_t, v_t, t, r, model_kwargs, rng_state, n_diffusion
            )
        else:
            dF_dv_dt = self.dde_derivative(
                unwrapped_model, x, z, t, r, model_kwargs, rng_state, n_diffusion
            )

        if self.transport.enhance_target:
            F_t_cond, F_t_uncond = self.get_enhanced_target(
                ema_model, x_t, t, ema_kwargs, null_kwargs, rng_state
            )
            enhance_target = True
        else:
            F_t_cond, F_t_uncond, enhance_target = 0, 0, False
        F_target = self.transport.target(
            x_t, v_t, x, z, t, r, dF_dv_dt, F_t_cond, F_t_uncond, enhance_target
        )
        denoising_loss = mean_flat((F_pred - F_target) ** 2)
        denoising_loss = torch.nan_to_num(
            denoising_loss, nan=0, posinf=1e5, neginf=-1e5
        )

        if use_dir_loss:
            directional_loss = mean_flat(
                1 - F.cosine_similarity(F_pred, F_target, dim=1)
            )
            directional_loss = torch.nan_to_num(
                directional_loss, nan=0, posinf=1e5, neginf=-1e5
            )
            denoising_loss += directional_loss

        weight = self.time_weighting(t, r, n_diffusion) * self.adaptive_weighting(
            denoising_loss
        )
        weighted_loss = weight * denoising_loss
        weighted_loss = weighted_loss.mean()

        proj_loss = mean_flat(1 - torch.cosine_similarity(h_proj, h_target, dim=-1))
        proj_loss = torch.nan_to_num(proj_loss, nan=0, posinf=1e5, neginf=-1e5)
        proj_loss = proj_loss.mean()

        loss_dict = dict(
            weighted_loss=weighted_loss.detach().item(),
            denoising_loss=denoising_loss.mean().detach().item(),
            proj_loss=proj_loss.detach().item(),
        )

        return weighted_loss, proj_loss, loss_dict

    def forward_with_cfg(
        self, model, x_t, t, r, y, y_null, cfg_scale, cfg_low, cfg_high
    ):
        apply_cfg = cfg_scale > 1.0 and t > cfg_low and t < cfg_high
        if apply_cfg:
            x_cur = torch.cat([x_t] * 2, dim=0)
            y_cur = torch.cat([y, y_null], dim=0)
        else:
            x_cur = x_t
            y_cur = y
        t_cur = torch.ones(x_cur.size(0)).to(x_cur) * self.transport.c_noise(t)
        r_cur = torch.ones(x_cur.size(0)).to(x_cur) * self.transport.c_noise(r)
        F_pred = model(x_cur, t_cur, r_cur, y_cur)
        if apply_cfg:
            F_cond, F_uncond = F_pred.chunk(2)
            F_pred = F_uncond + cfg_scale * (F_cond - F_uncond)
        return F_pred

    @torch.no_grad()
    def sample(
        self,
        model,
        y,
        y_null,
        z,
        T_max,
        T_min=0.0,
        num_steps=4,
        cfg_scale=1.0,
        cfg_low=0.0,
        cfg_high=1.0,
        stochasticity_ratio=0.0,
        sample_type: str = "transition",  # 'transition', diffusion
        step_callback: Callable[[int], None] | None = None,
    ):
        _dtype = z.dtype
        t_steps = torch.linspace(T_max, T_min, num_steps + 1, dtype=torch.float64).to(z)
        cfg_low = cfg_low * T_max
        cfg_high = cfg_high * T_max

        x_cur = deepcopy(z).to(torch.float64)
        samples = [z]
        for i, (t_cur, t_next) in enumerate(zip(t_steps[:-1], t_steps[1:])):
            # x_{N} -> x_{N-1} -> ... -> x_{n+1} -> x_{n} -> x_{n-1} -> ... -> x_{1} -> x_{0}
            if sample_type == "transition":
                _t_next = t_next
            elif sample_type == "ddiffusion":
                _t_next = t_cur
            else:
                raise
            F_pred = self.forward_with_cfg(
                model,
                x_cur.to(_dtype),
                t_cur,
                _t_next,
                y,
                y_null,
                cfg_scale,
                cfg_low,
                cfg_high,
            ).to(torch.float64)
            if stochasticity_ratio > 0.0 and t_cur < T_max and _t_next > T_min:
                s_ratio = stochasticity_ratio
            else:
                s_ratio = 0.0
            x_next = self.transport.from_x_t_to_x_r(
                x_cur, t_cur, t_next, F_pred, s_ratio
            )
            samples.append(x_next)
            x_cur = x_next
            if step_callback is not None:
                step_callback(i)

        return torch.stack(samples, dim=0).to(torch.float32)