Spaces:
Sleeping
Sleeping
| from typing import Generic, List, Optional, TypeVar | |
| from functools import partial | |
| from pydantic import BaseModel, ValidationError, validator | |
| from pydantic.generics import GenericModel | |
| from sentence_transformers import SentenceTransformer | |
| from fastapi import FastAPI | |
| import os, asyncio, numpy, ujson | |
| MODEL = SentenceTransformer("all-mpnet-base-v2") | |
| def cache(func): | |
| inner_cache = dict() | |
| def inner(sentences: List[str]): | |
| if len(sentences) == 0: | |
| return [] | |
| not_in_cache = list(filter(lambda s: s not in inner_cache.keys(), sentences)) | |
| if len(not_in_cache) > 0: | |
| processed_sentences = func(list(not_in_cache)) | |
| for sentence, embedding in zip(not_in_cache, processed_sentences): | |
| inner_cache[sentence] = embedding | |
| return [inner_cache[s] for s in sentences] | |
| return inner | |
| def _encode(sentences: List[str]): | |
| array = [numpy.around(a.numpy(), 3) for a in MODEL.encode(sentences, normalize_embeddings=True, convert_to_tensor=True, batch_size=4, show_progress_bar=True)] | |
| return array | |
| async def encode(sentences: List[str]) -> List[numpy.ndarray]: | |
| loop = asyncio.get_event_loop() | |
| result = await loop.run_in_executor(None, _encode, sentences) | |
| return result | |
| class SemanticSearchReq(BaseModel): | |
| query: str | |
| candidates: List[str] | |
| class EmbedReq(BaseModel): | |
| sentences: List[str] | |
| app = FastAPI() | |
| async def embed(embed: EmbedReq): | |
| result = await encode(embed.sentences) | |
| # Convert it to an ordinary list of floats | |
| return ujson.dumps([r.tolist() for r in result]) |