Spaces:
Sleeping
Sleeping
Commit
Β·
c94dde8
1
Parent(s):
bcdaf27
add app and requirements
Browse files- .gitignore +1 -0
- app.py +252 -0
- requirements.txt +6 -0
.gitignore
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
*.pdf
|
app.py
ADDED
|
@@ -0,0 +1,252 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Import the required libraries
|
| 2 |
+
import gradio as gr
|
| 3 |
+
import cv2 # OpenCV, to read and manipulate images
|
| 4 |
+
import easyocr # EasyOCR, for OCR
|
| 5 |
+
import torch # PyTorch, for deep learning
|
| 6 |
+
import pymupdf # PDF manipulation
|
| 7 |
+
from transformers import pipeline # Hugging Face Transformers, for NER
|
| 8 |
+
import os # OS, for file operations
|
| 9 |
+
from glob import glob # Glob, to get file paths
|
| 10 |
+
|
| 11 |
+
##########################################################################################################
|
| 12 |
+
# Initiate the models
|
| 13 |
+
|
| 14 |
+
# Easyocr model
|
| 15 |
+
print("Initiating easyocr")
|
| 16 |
+
reader = easyocr.Reader(['en'], gpu=torch.cuda.is_available(), model_storage_directory='.')
|
| 17 |
+
|
| 18 |
+
# Use gpu if available
|
| 19 |
+
print("Using gpu if available")
|
| 20 |
+
device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
|
| 21 |
+
print(f"Using device: {device}")
|
| 22 |
+
|
| 23 |
+
# Ner model
|
| 24 |
+
print("Initiating nlp pipeline")
|
| 25 |
+
nlp = pipeline("token-classification", model="dslim/distilbert-NER", device=device)
|
| 26 |
+
|
| 27 |
+
##########################################################################################################
|
| 28 |
+
## Functions
|
| 29 |
+
|
| 30 |
+
# Define img_format
|
| 31 |
+
img_format = "png"
|
| 32 |
+
|
| 33 |
+
# Convert pdf to set of images
|
| 34 |
+
def convert_to_images(pdf_file_path):
|
| 35 |
+
|
| 36 |
+
# Create a directory to store pdf images
|
| 37 |
+
pdf_images_dir = f'{pdf_file_path}_images'
|
| 38 |
+
os.makedirs(pdf_images_dir, exist_ok=True)
|
| 39 |
+
|
| 40 |
+
# DPI
|
| 41 |
+
dpi = 150
|
| 42 |
+
|
| 43 |
+
# Convert the PDF to images
|
| 44 |
+
print("Converting PDF to images...")
|
| 45 |
+
doc = pymupdf.open(pdf_file_path) # open document
|
| 46 |
+
for page in doc: # iterate through the pages
|
| 47 |
+
pix = page.get_pixmap(dpi=dpi) # render page to an image
|
| 48 |
+
pix.save(f"{pdf_images_dir}/page-{page.number}.{img_format}") # store image as a PNG
|
| 49 |
+
|
| 50 |
+
# Return the directory with the images
|
| 51 |
+
return pdf_images_dir
|
| 52 |
+
|
| 53 |
+
# Do the redaction
|
| 54 |
+
def redact_image(pdf_image_path, redaction_score_threshold):
|
| 55 |
+
|
| 56 |
+
# Loop through the images
|
| 57 |
+
print("Redacting sensitive information...")
|
| 58 |
+
|
| 59 |
+
print(f"Processing {pdf_image_path}...")
|
| 60 |
+
# Read the image
|
| 61 |
+
cv_image = cv2.imread(pdf_image_path)
|
| 62 |
+
|
| 63 |
+
# Read the text from the image
|
| 64 |
+
result = reader.readtext(cv_image, height_ths=0, width_ths=0, x_ths=0, y_ths=0)
|
| 65 |
+
|
| 66 |
+
# Get the text from the result
|
| 67 |
+
text = ' '.join([text for (bbox, text, prob) in result])
|
| 68 |
+
|
| 69 |
+
# Perform NER on the text
|
| 70 |
+
ner_results = nlp(text)
|
| 71 |
+
|
| 72 |
+
# Draw bounding boxes
|
| 73 |
+
for ((bbox, text, prob),ner_result) in zip(result, ner_results):
|
| 74 |
+
|
| 75 |
+
# Get the coordinates of the bounding box
|
| 76 |
+
(top_left, top_right, bottom_right, bottom_left) = bbox
|
| 77 |
+
top_left = tuple(map(int, top_left))
|
| 78 |
+
bottom_right = tuple(map(int, bottom_right))
|
| 79 |
+
|
| 80 |
+
# Calculate the centers of the top and bottom of the bounding box
|
| 81 |
+
# center_top = (int((top_left[0] + top_right[0]) / 2), int((top_left[1] + top_right[1]) / 2))
|
| 82 |
+
# center_bottom = (int((bottom_left[0] + bottom_right[0]) / 2), int((bottom_left[1] + bottom_right[1]) / 2))
|
| 83 |
+
|
| 84 |
+
|
| 85 |
+
# If the NER result is not empty, and the score is high
|
| 86 |
+
if len(ner_result) > 0 and ner_result['score'] > redaction_score_threshold:
|
| 87 |
+
|
| 88 |
+
# Get the entity and score
|
| 89 |
+
# entity = ner_result[0]['entity']
|
| 90 |
+
# score = str(ner_result[0]['score'])
|
| 91 |
+
|
| 92 |
+
# Apply a irreversible redaction
|
| 93 |
+
cv2.rectangle(cv_image, top_left, bottom_right, (0, 0, 0), -1)
|
| 94 |
+
# else:
|
| 95 |
+
# entity = 'O'
|
| 96 |
+
# score = '0'
|
| 97 |
+
|
| 98 |
+
# # Draw the bounding box
|
| 99 |
+
# cv2.rectangle(cv_image, top_left, bottom_right, (0, 255, 0), 1)
|
| 100 |
+
# # Draw the entity and score
|
| 101 |
+
# cv2.putText(cv_image, entity, center_top, cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 255), 2)
|
| 102 |
+
# cv2.putText(cv_image, score, center_bottom, cv2.FONT_HERSHEY_SIMPLEX, 0.5, (255, 0, 0), 2)
|
| 103 |
+
|
| 104 |
+
# Save the redacted image
|
| 105 |
+
print(f"Saving redacted {pdf_image_path}...")
|
| 106 |
+
redacted_image_path = pdf_image_path.replace(f'.{img_format}', f'_redacted.{img_format}')
|
| 107 |
+
# Save the redacted image in png format
|
| 108 |
+
cv2.imwrite(redacted_image_path, cv_image)
|
| 109 |
+
|
| 110 |
+
return redacted_image_path
|
| 111 |
+
|
| 112 |
+
# Convert the set of redacted images to a pdf
|
| 113 |
+
def stich_images_to_pdf(redacted_image_files, input_pdf_name):
|
| 114 |
+
|
| 115 |
+
# Sort the redacted images
|
| 116 |
+
redacted_image_files.sort()
|
| 117 |
+
|
| 118 |
+
# Convert the redacted images to a single PDF
|
| 119 |
+
print("Converting redacted images to PDF...")
|
| 120 |
+
redacted_pdf_folder = "/tmp/gradio/redacted"
|
| 121 |
+
os.makedirs(redacted_pdf_folder, exist_ok=True )
|
| 122 |
+
redacted_pdf_path = f'{redacted_pdf_folder}/{input_pdf_name}_redacted.pdf'
|
| 123 |
+
|
| 124 |
+
doc = pymupdf.open()
|
| 125 |
+
for redacted_image_file in redacted_image_files:
|
| 126 |
+
img = pymupdf.open(redacted_image_file) # open pic as document
|
| 127 |
+
rect = img[0].rect # pic dimension
|
| 128 |
+
pdfbytes = img.convert_to_pdf() # make a PDF stream
|
| 129 |
+
img.close() # no longer needed
|
| 130 |
+
imgPDF = pymupdf.open("pdf", pdfbytes) # open stream as PDF
|
| 131 |
+
page = doc.new_page(width = rect.width, # new page with ...
|
| 132 |
+
height = rect.height) # pic dimension
|
| 133 |
+
page.show_pdf_page(rect, imgPDF, 0) # image fills the page
|
| 134 |
+
doc.save(redacted_pdf_path)
|
| 135 |
+
|
| 136 |
+
# print(f"PDF saved as {redacted_pdf_path}")
|
| 137 |
+
|
| 138 |
+
return redacted_pdf_path
|
| 139 |
+
|
| 140 |
+
def cleanup(redacted_image_files, pdf_images, pdf_images_dir, original_pdf):
|
| 141 |
+
|
| 142 |
+
# Remove the directory with the images
|
| 143 |
+
print("Cleaning up...")
|
| 144 |
+
|
| 145 |
+
# Remove the redacted images
|
| 146 |
+
for file in redacted_image_files:
|
| 147 |
+
os.remove(file)
|
| 148 |
+
|
| 149 |
+
# Remove the pdf images
|
| 150 |
+
for file in pdf_images:
|
| 151 |
+
os.remove(file)
|
| 152 |
+
|
| 153 |
+
# Remove the pdf images directory
|
| 154 |
+
os.rmdir(pdf_images_dir)
|
| 155 |
+
|
| 156 |
+
# Remove original pdf
|
| 157 |
+
os.remove(original_pdf)
|
| 158 |
+
|
| 159 |
+
return None
|
| 160 |
+
|
| 161 |
+
# Func to control ui
|
| 162 |
+
def predict(input_pdf_path, sensitivity):
|
| 163 |
+
|
| 164 |
+
print("Setting threshold")
|
| 165 |
+
# Convert sensitivity to threshold
|
| 166 |
+
redaction_score_threshold = (100-sensitivity)/100
|
| 167 |
+
|
| 168 |
+
# Get file name
|
| 169 |
+
print("Getting filename")
|
| 170 |
+
input_pdf_name = input_pdf_path.split('.')[-2]
|
| 171 |
+
|
| 172 |
+
# Convert the PDF to images
|
| 173 |
+
print("Converting pdf to images")
|
| 174 |
+
pdf_images_dir = convert_to_images(input_pdf_path)
|
| 175 |
+
|
| 176 |
+
# Get the file paths of the images
|
| 177 |
+
print("Gathering converted images")
|
| 178 |
+
pdf_images = glob(f'{pdf_images_dir}/*.{img_format}', recursive=True)
|
| 179 |
+
pdf_images.sort()
|
| 180 |
+
|
| 181 |
+
# Redact images
|
| 182 |
+
print("Redacting images")
|
| 183 |
+
redacted_image_files = []
|
| 184 |
+
|
| 185 |
+
for pdf_image in pdf_images:
|
| 186 |
+
|
| 187 |
+
redacted_image_files.append(redact_image(pdf_image, redaction_score_threshold))
|
| 188 |
+
|
| 189 |
+
|
| 190 |
+
# Convert the redacted images to a single PDF
|
| 191 |
+
print("Stitching images to pdf")
|
| 192 |
+
redacted_pdf_path = stich_images_to_pdf(redacted_image_files, input_pdf_name)
|
| 193 |
+
|
| 194 |
+
print("Cleaning up")
|
| 195 |
+
cleanup(redacted_image_files, pdf_images, pdf_images_dir, input_pdf_path)
|
| 196 |
+
|
| 197 |
+
return redacted_pdf_path
|
| 198 |
+
|
| 199 |
+
##########################################################################################################
|
| 200 |
+
|
| 201 |
+
contact_text = """
|
| 202 |
+
# Contact Information
|
| 203 |
+
|
| 204 |
+
π€ [Mitanshu Sukhwani](https://www.linkedin.com/in/mitanshusukhwani/)
|
| 205 |
+
|
| 206 |
+
βοΈ mitanshu.sukhwani@gmail.com
|
| 207 |
+
|
| 208 |
+
π [mitanshu7](https://github.com/mitanshu7)
|
| 209 |
+
"""
|
| 210 |
+
|
| 211 |
+
##########################################################################################################
|
| 212 |
+
# Gradio interface
|
| 213 |
+
|
| 214 |
+
with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
| 215 |
+
|
| 216 |
+
# Title and description
|
| 217 |
+
gr.Markdown("# RedactNLP: Redact your PDF!")
|
| 218 |
+
gr.Markdown("## How redaction happens:")
|
| 219 |
+
gr.Markdown("""
|
| 220 |
+
1. The PDF pages are converted to images.
|
| 221 |
+
2. EasyOCR is run on the converted images to extract text.
|
| 222 |
+
3. "FacebookAI/xlm-roberta-large-finetuned-conll03-english" model does the token classification.
|
| 223 |
+
4. Non-recoverable mask is applied to identified elements.
|
| 224 |
+
""")
|
| 225 |
+
|
| 226 |
+
# Input Section
|
| 227 |
+
pdf_file_input = gr.File(file_count='single', file_types=['pdf'], label='Upload PDF', show_label=True, interactive=True)
|
| 228 |
+
|
| 229 |
+
# Slider for results count
|
| 230 |
+
slider_input = gr.Slider(
|
| 231 |
+
minimum=0, maximum=100, value=80, step=1,
|
| 232 |
+
label="Sensitivity to remove elements. Higher is more sensitive, hence will redact aggresively."
|
| 233 |
+
)
|
| 234 |
+
|
| 235 |
+
# Submission Button
|
| 236 |
+
submit_btn = gr.Button("Redact")
|
| 237 |
+
|
| 238 |
+
# Output section
|
| 239 |
+
output = gr.File(file_count='single', file_types=['pdf'], label='Download redacted PDF', show_label=True, interactive=False)
|
| 240 |
+
|
| 241 |
+
# Attribution
|
| 242 |
+
gr.Markdown(contact_text)
|
| 243 |
+
|
| 244 |
+
# Link button click to the prediction function
|
| 245 |
+
submit_btn.click(predict, [pdf_file_input, slider_input], output)
|
| 246 |
+
|
| 247 |
+
|
| 248 |
+
################################################################################
|
| 249 |
+
|
| 250 |
+
if __name__ == "__main__":
|
| 251 |
+
demo.launch()
|
| 252 |
+
|
requirements.txt
ADDED
|
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
torch
|
| 2 |
+
transformers
|
| 3 |
+
opencv-python
|
| 4 |
+
easyocr
|
| 5 |
+
pymupdf
|
| 6 |
+
gradio
|