Spaces:
Configuration error
Configuration error
| # Copyright (c) 2023-2024 DeepSeek. | |
| # | |
| # Permission is hereby granted, free of charge, to any person obtaining a copy of | |
| # this software and associated documentation files (the "Software"), to deal in | |
| # the Software without restriction, including without limitation the rights to | |
| # use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of | |
| # the Software, and to permit persons to whom the Software is furnished to do so, | |
| # subject to the following conditions: | |
| # | |
| # The above copyright notice and this permission notice shall be included in all | |
| # copies or substantial portions of the Software. | |
| # | |
| # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR | |
| # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS | |
| # FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR | |
| # COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER | |
| # IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN | |
| # CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. | |
| import torch | |
| from attrdict import AttrDict | |
| from einops import rearrange | |
| from transformers import ( | |
| AutoConfig, | |
| AutoModelForCausalLM, | |
| LlamaConfig, | |
| LlamaForCausalLM, | |
| PreTrainedModel, | |
| ) | |
| from transformers.configuration_utils import PretrainedConfig | |
| from deepseek_vl.models.clip_encoder import CLIPVisionTower, HybridVisionTower | |
| from deepseek_vl.models.projector import MlpProjector | |
| def model_name_to_cls(cls_name): | |
| if "MlpProjector" in cls_name: | |
| cls = MlpProjector | |
| elif "CLIPVisionTower" in cls_name: | |
| cls = CLIPVisionTower | |
| elif "HybridVisionTower" in cls_name: | |
| cls = HybridVisionTower | |
| else: | |
| raise ValueError(f"class_name {cls_name} is invalid.") | |
| return cls | |
| class VisionConfig(PretrainedConfig): | |
| model_type = "vision" | |
| cls: str = "" | |
| params: AttrDict = {} | |
| def __init__(self, **kwargs): | |
| super().__init__(**kwargs) | |
| self.cls = kwargs.get("cls", "") | |
| if not isinstance(self.cls, str): | |
| self.cls = self.cls.__name__ | |
| self.params = AttrDict(kwargs.get("params", {})) | |
| class AlignerConfig(PretrainedConfig): | |
| model_type = "aligner" | |
| cls: str = "" | |
| params: AttrDict = {} | |
| def __init__(self, **kwargs): | |
| super().__init__(**kwargs) | |
| self.cls = kwargs.get("cls", "") | |
| if not isinstance(self.cls, str): | |
| self.cls = self.cls.__name__ | |
| self.params = AttrDict(kwargs.get("params", {})) | |
| class MultiModalityConfig(PretrainedConfig): | |
| model_type = "multi_modality" | |
| vision_config: VisionConfig | |
| aligner_config: AlignerConfig | |
| language_config: LlamaConfig | |
| def __init__(self, **kwargs): | |
| super().__init__(**kwargs) | |
| vision_config = kwargs.get("vision_config", {}) | |
| self.vision_config = VisionConfig(**vision_config) | |
| aligner_config = kwargs.get("aligner_config", {}) | |
| self.aligner_config = AlignerConfig(**aligner_config) | |
| language_config = kwargs.get("language_config", {}) | |
| if isinstance(language_config, LlamaConfig): | |
| self.language_config = language_config | |
| else: | |
| self.language_config = LlamaConfig(**language_config) | |
| class MultiModalityPreTrainedModel(PreTrainedModel): | |
| config_class = MultiModalityConfig | |
| base_model_prefix = "multi_modality" | |
| _no_split_modules = [] | |
| _skip_keys_device_placement = "past_key_values" | |
| class MultiModalityCausalLM(MultiModalityPreTrainedModel): | |
| def __init__(self, config: MultiModalityConfig): | |
| super().__init__(config) | |
| vision_config = config.vision_config | |
| vision_cls = model_name_to_cls(vision_config.cls) | |
| self.vision_model = vision_cls(**vision_config.params) | |
| aligner_config = config.aligner_config | |
| aligner_cls = model_name_to_cls(aligner_config.cls) | |
| self.aligner = aligner_cls(aligner_config.params) | |
| language_config = config.language_config | |
| self.language_model = LlamaForCausalLM(language_config) | |
| def prepare_inputs_embeds( | |
| self, | |
| input_ids: torch.LongTensor, | |
| pixel_values: torch.FloatTensor, | |
| images_seq_mask: torch.LongTensor, | |
| images_emb_mask: torch.LongTensor, | |
| **kwargs, | |
| ): | |
| """ | |
| Args: | |
| input_ids (torch.LongTensor): [b, T] | |
| pixel_values (torch.FloatTensor): [b, n_images, 3, h, w] | |
| images_seq_mask (torch.BoolTensor): [b, T] | |
| images_emb_mask (torch.BoolTensor): [b, n_images, n_image_tokens] | |
| assert torch.sum(images_seq_mask) == torch.sum(images_emb_mask) | |
| Returns: | |
| input_embeds (torch.Tensor): [b, T, D] | |
| """ | |
| bs, n = pixel_values.shape[0:2] | |
| images = rearrange(pixel_values, "b n c h w -> (b n) c h w") | |
| # [b x n, T2, D] | |
| images_embeds = self.aligner(self.vision_model(images)) | |
| # [b x n, T2, D] -> [b, n x T2, D] | |
| images_embeds = rearrange(images_embeds, "(b n) t d -> b (n t) d", b=bs, n=n) | |
| # [b, n, T2] -> [b, n x T2] | |
| images_emb_mask = rearrange(images_emb_mask, "b n t -> b (n t)") | |
| # [b, T, D] | |
| input_ids[input_ids < 0] = 0 # ignore the image embeddings | |
| inputs_embeds = self.language_model.get_input_embeddings()(input_ids) | |
| # replace with the image embeddings | |
| inputs_embeds[images_seq_mask] = images_embeds[images_emb_mask] | |
| return inputs_embeds | |
| AutoConfig.register("vision", VisionConfig) | |
| AutoConfig.register("aligner", AlignerConfig) | |
| AutoConfig.register("multi_modality", MultiModalityConfig) | |
| AutoModelForCausalLM.register(MultiModalityConfig, MultiModalityCausalLM) | |