Spaces:
Configuration error
Configuration error
| # Copyright (c) Meta Platforms, Inc. and affiliates. | |
| # All rights reserved. | |
| # This source code is licensed under the license found in the | |
| # LICENSE file in the root directory of this source tree. | |
| import copy | |
| from dataclasses import dataclass | |
| from functools import partial | |
| from typing import List, Optional, Tuple, Type, Union | |
| import torch | |
| import torch.nn as nn | |
| import torch.nn.functional as F | |
| class MLPBlock(nn.Module): | |
| def __init__( | |
| self, | |
| embedding_dim: int, | |
| mlp_dim: int, | |
| act: Type[nn.Module] = nn.GELU, | |
| ) -> None: | |
| super().__init__() | |
| self.lin1 = nn.Linear(embedding_dim, mlp_dim) | |
| self.lin2 = nn.Linear(mlp_dim, embedding_dim) | |
| self.act = act() | |
| def forward(self, x: torch.Tensor) -> torch.Tensor: | |
| return self.lin2(self.act(self.lin1(x))) | |
| # From https://github.com/facebookresearch/detectron2/blob/main/detectron2/layers/batch_norm.py # noqa | |
| # Itself from https://github.com/facebookresearch/ConvNeXt/blob/d1fa8f6fef0a165b27399986cc2bdacc92777e40/models/convnext.py#L119 # noqa | |
| class LayerNorm2d(nn.Module): | |
| def __init__(self, num_channels: int, eps: float = 1e-6) -> None: | |
| super().__init__() | |
| self.weight = nn.Parameter(torch.ones(num_channels)) | |
| self.bias = nn.Parameter(torch.zeros(num_channels)) | |
| self.eps = eps | |
| def forward(self, x: torch.Tensor) -> torch.Tensor: | |
| u = x.mean(1, keepdim=True) | |
| s = (x - u).pow(2).mean(1, keepdim=True) | |
| x = (x - u) / torch.sqrt(s + self.eps) | |
| x = self.weight[:, None, None] * x + self.bias[:, None, None] | |
| return x | |
| # This class and its supporting functions below lightly adapted from the ViTDet backbone available at: https://github.com/facebookresearch/detectron2/blob/main/detectron2/modeling/backbone/vit.py # noqa | |
| class ImageEncoderViT(nn.Module): | |
| def __init__( | |
| self, | |
| img_size: int = 1024, | |
| patch_size: int = 16, | |
| in_chans: int = 3, | |
| embed_dim: int = 768, | |
| depth: int = 12, | |
| num_heads: int = 12, | |
| mlp_ratio: float = 4.0, | |
| out_chans: int = 256, | |
| qkv_bias: bool = True, | |
| norm_layer: Type[nn.Module] = nn.LayerNorm, | |
| act_layer: Type[nn.Module] = nn.GELU, | |
| use_abs_pos: bool = True, | |
| use_rel_pos: bool = False, | |
| rel_pos_zero_init: bool = True, | |
| window_size: int = 0, | |
| global_attn_indexes: Tuple[int, ...] = (), | |
| downsample_channels: Tuple[int, ...] = (512, 1024), | |
| ) -> None: | |
| """ | |
| Args: | |
| img_size (int): Input image size. | |
| patch_size (int): Patch size. | |
| in_chans (int): Number of input image channels. | |
| embed_dim (int): Patch embedding dimension. | |
| depth (int): Depth of ViT. | |
| num_heads (int): Number of attention heads in each ViT block. | |
| mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. | |
| qkv_bias (bool): If True, add a learnable bias to query, key, value. | |
| norm_layer (nn.Module): Normalization layer. | |
| act_layer (nn.Module): Activation layer. | |
| use_abs_pos (bool): If True, use absolute positional embeddings. | |
| use_rel_pos (bool): If True, add relative positional embeddings to the attention map. | |
| rel_pos_zero_init (bool): If True, zero initialize relative positional parameters. | |
| window_size (int): Window size for window attention blocks. | |
| global_attn_indexes (list): Indexes for blocks using global attention. | |
| downsample_channels (list): Channels for downsampling layers. | |
| """ | |
| super().__init__() | |
| self.img_size = img_size | |
| self.patch_embed = PatchEmbed( | |
| kernel_size=(patch_size, patch_size), | |
| stride=(patch_size, patch_size), | |
| in_chans=in_chans, | |
| embed_dim=embed_dim, | |
| ) | |
| self.pos_embed: Optional[nn.Parameter] = None | |
| if use_abs_pos: | |
| # Initialize absolute positional embedding with pretrain image size. | |
| self.pos_embed = nn.Parameter( | |
| torch.zeros( | |
| 1, img_size // patch_size, img_size // patch_size, embed_dim | |
| ) | |
| ) | |
| self.blocks = nn.ModuleList() | |
| for i in range(depth): | |
| block = Block( | |
| dim=embed_dim, | |
| num_heads=num_heads, | |
| mlp_ratio=mlp_ratio, | |
| qkv_bias=qkv_bias, | |
| norm_layer=norm_layer, | |
| act_layer=act_layer, | |
| use_rel_pos=use_rel_pos, | |
| rel_pos_zero_init=rel_pos_zero_init, | |
| window_size=window_size if i not in global_attn_indexes else 0, | |
| input_size=(img_size // patch_size, img_size // patch_size), | |
| ) | |
| self.blocks.append(block) | |
| self.neck = nn.Sequential( | |
| nn.Conv2d( | |
| embed_dim, | |
| out_chans, | |
| kernel_size=1, | |
| bias=False, | |
| ), | |
| LayerNorm2d(out_chans), | |
| nn.Conv2d( | |
| out_chans, | |
| out_chans, | |
| kernel_size=3, | |
| padding=1, | |
| bias=False, | |
| ), | |
| LayerNorm2d(out_chans), | |
| ) | |
| in_channels = out_chans | |
| downsamples = [] | |
| for i in range(len(downsample_channels)): | |
| out_channels = downsample_channels[i] | |
| downsamples.append( | |
| nn.Conv2d( | |
| in_channels, | |
| out_channels, | |
| kernel_size=3, | |
| stride=2, | |
| padding=1, | |
| bias=False, | |
| ) | |
| ) | |
| in_channels = out_channels | |
| self.downsamples = nn.Sequential(*downsamples) | |
| self.sam_hd = True | |
| if self.sam_hd: | |
| self.hd_alpha_downsamples = nn.Parameter(torch.zeros(1)) | |
| # self.neck_hd = nn.Linear(embed_dim, embed_dim) | |
| self.neck_hd = copy.deepcopy(self.neck) | |
| # self.downsamples_hd = copy.deepcopy(self.downsamples) | |
| def forward(self, x: torch.Tensor) -> torch.Tensor: | |
| x = self.patch_embed(x) | |
| if self.pos_embed is not None: | |
| x = x + self.pos_embed | |
| global_features = [] | |
| for i, blk in enumerate(self.blocks): | |
| x = blk(x) | |
| if self.sam_hd and blk.window_size == 0: | |
| global_features.append(x) | |
| x = self.neck(x.permute(0, 3, 1, 2)) | |
| x_dtype = x.dtype | |
| x = F.interpolate( | |
| x.float(), size=(96, 96), mode="bilinear", align_corners=False | |
| ).to(x_dtype) | |
| x = self.downsamples(x) | |
| if self.sam_hd: | |
| first_global_feature = self.neck_hd(global_features[0].permute(0, 3, 1, 2)) | |
| x_dtype = first_global_feature.dtype | |
| first_global_feature = F.interpolate( | |
| first_global_feature.float(), | |
| size=(96, 96), | |
| mode="bilinear", | |
| align_corners=False, | |
| ) | |
| first_global_feature = self.downsamples(first_global_feature.to(x_dtype)) | |
| x = x + first_global_feature * self.hd_alpha_downsamples | |
| return x | |
| class Block(nn.Module): | |
| """Transformer blocks with support of window attention and residual propagation blocks""" | |
| def __init__( | |
| self, | |
| dim: int, | |
| num_heads: int, | |
| mlp_ratio: float = 4.0, | |
| qkv_bias: bool = True, | |
| norm_layer: Type[nn.Module] = nn.LayerNorm, | |
| act_layer: Type[nn.Module] = nn.GELU, | |
| use_rel_pos: bool = False, | |
| rel_pos_zero_init: bool = True, | |
| window_size: int = 0, | |
| input_size: Optional[Tuple[int, int]] = None, | |
| ) -> None: | |
| """ | |
| Args: | |
| dim (int): Number of input channels. | |
| num_heads (int): Number of attention heads in each ViT block. | |
| mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. | |
| qkv_bias (bool): If True, add a learnable bias to query, key, value. | |
| norm_layer (nn.Module): Normalization layer. | |
| act_layer (nn.Module): Activation layer. | |
| use_rel_pos (bool): If True, add relative positional embeddings to the attention map. | |
| rel_pos_zero_init (bool): If True, zero initialize relative positional parameters. | |
| window_size (int): Window size for window attention blocks. If it equals 0, then | |
| use global attention. | |
| input_size (tuple(int, int) or None): Input resolution for calculating the relative | |
| positional parameter size. | |
| """ | |
| super().__init__() | |
| self.norm1 = norm_layer(dim) | |
| self.attn = Attention( | |
| dim, | |
| num_heads=num_heads, | |
| qkv_bias=qkv_bias, | |
| use_rel_pos=use_rel_pos, | |
| rel_pos_zero_init=rel_pos_zero_init, | |
| input_size=input_size if window_size == 0 else (window_size, window_size), | |
| ) | |
| self.norm2 = norm_layer(dim) | |
| self.mlp = MLPBlock( | |
| embedding_dim=dim, mlp_dim=int(dim * mlp_ratio), act=act_layer | |
| ) | |
| self.window_size = window_size | |
| def forward(self, x: torch.Tensor) -> torch.Tensor: | |
| shortcut = x | |
| x = self.norm1(x) | |
| # Window partition | |
| if self.window_size > 0: | |
| H, W = x.shape[1], x.shape[2] | |
| x, pad_hw = window_partition(x, self.window_size) | |
| x = self.attn(x) | |
| # Reverse window partition | |
| if self.window_size > 0: | |
| x = window_unpartition(x, self.window_size, pad_hw, (H, W)) | |
| x = shortcut + x | |
| x = x + self.mlp(self.norm2(x)) | |
| return x | |
| class Attention(nn.Module): | |
| """Multi-head Attention block with relative position embeddings.""" | |
| def __init__( | |
| self, | |
| dim: int, | |
| num_heads: int = 8, | |
| qkv_bias: bool = True, | |
| use_rel_pos: bool = False, | |
| rel_pos_zero_init: bool = True, | |
| input_size: Optional[Tuple[int, int]] = None, | |
| ) -> None: | |
| """ | |
| Args: | |
| dim (int): Number of input channels. | |
| num_heads (int): Number of attention heads. | |
| qkv_bias (bool): If True, add a learnable bias to query, key, value. | |
| rel_pos (bool): If True, add relative positional embeddings to the attention map. | |
| rel_pos_zero_init (bool): If True, zero initialize relative positional parameters. | |
| input_size (tuple(int, int) or None): Input resolution for calculating the relative | |
| positional parameter size. | |
| """ | |
| super().__init__() | |
| self.num_heads = num_heads | |
| head_dim = dim // num_heads | |
| self.scale = head_dim**-0.5 | |
| self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias) | |
| self.proj = nn.Linear(dim, dim) | |
| self.use_rel_pos = use_rel_pos | |
| if self.use_rel_pos: | |
| assert ( | |
| input_size is not None | |
| ), "Input size must be provided if using relative positional encoding." | |
| # initialize relative positional embeddings | |
| self.rel_pos_h = nn.Parameter(torch.zeros(2 * input_size[0] - 1, head_dim)) | |
| self.rel_pos_w = nn.Parameter(torch.zeros(2 * input_size[1] - 1, head_dim)) | |
| def forward(self, x: torch.Tensor) -> torch.Tensor: | |
| B, H, W, _ = x.shape | |
| # qkv with shape (3, B, nHead, H * W, C) | |
| qkv = ( | |
| self.qkv(x).reshape(B, H * W, 3, self.num_heads, -1).permute(2, 0, 3, 1, 4) | |
| ) | |
| # q, k, v with shape (B * nHead, H * W, C) | |
| q, k, v = qkv.reshape(3, B * self.num_heads, H * W, -1).unbind(0) | |
| def do_attention(q, k, v): | |
| attn = (q * self.scale) @ k.transpose(-2, -1) | |
| if self.use_rel_pos: | |
| attn = add_decomposed_rel_pos( | |
| attn, q, self.rel_pos_h, self.rel_pos_w, (H, W), (H, W) | |
| ) | |
| attn = attn.softmax(dim=-1) | |
| x = ( | |
| (attn @ v) | |
| .view(B, self.num_heads, H, W, -1) | |
| .permute(0, 2, 3, 1, 4) | |
| .reshape(B, H, W, -1) | |
| ) | |
| return x | |
| # from haiscale.utils import on_demand_checkpoint | |
| # x = on_demand_checkpoint(do_attention, q, k, v) | |
| x = do_attention(q, k, v) | |
| x = self.proj(x) | |
| return x | |
| def window_partition( | |
| x: torch.Tensor, window_size: int | |
| ) -> Tuple[torch.Tensor, Tuple[int, int]]: | |
| """ | |
| Partition into non-overlapping windows with padding if needed. | |
| Args: | |
| x (tensor): input tokens with [B, H, W, C]. | |
| window_size (int): window size. | |
| Returns: | |
| windows: windows after partition with [B * num_windows, window_size, window_size, C]. | |
| (Hp, Wp): padded height and width before partition | |
| """ | |
| B, H, W, C = x.shape | |
| pad_h = (window_size - H % window_size) % window_size | |
| pad_w = (window_size - W % window_size) % window_size | |
| if pad_h > 0 or pad_w > 0: | |
| x = F.pad(x, (0, 0, 0, pad_w, 0, pad_h)) | |
| Hp, Wp = H + pad_h, W + pad_w | |
| x = x.view(B, Hp // window_size, window_size, Wp // window_size, window_size, C) | |
| windows = ( | |
| x.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, window_size, window_size, C) | |
| ) | |
| return windows, (Hp, Wp) | |
| def window_unpartition( | |
| windows: torch.Tensor, | |
| window_size: int, | |
| pad_hw: Tuple[int, int], | |
| hw: Tuple[int, int], | |
| ) -> torch.Tensor: | |
| """ | |
| Window unpartition into original sequences and removing padding. | |
| Args: | |
| windows (tensor): input tokens with [B * num_windows, window_size, window_size, C]. | |
| window_size (int): window size. | |
| pad_hw (Tuple): padded height and width (Hp, Wp). | |
| hw (Tuple): original height and width (H, W) before padding. | |
| Returns: | |
| x: unpartitioned sequences with [B, H, W, C]. | |
| """ | |
| Hp, Wp = pad_hw | |
| H, W = hw | |
| B = windows.shape[0] // (Hp * Wp // window_size // window_size) | |
| x = windows.view( | |
| B, Hp // window_size, Wp // window_size, window_size, window_size, -1 | |
| ) | |
| x = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(B, Hp, Wp, -1) | |
| if Hp > H or Wp > W: | |
| x = x[:, :H, :W, :].contiguous() | |
| return x | |
| def get_rel_pos(q_size: int, k_size: int, rel_pos: torch.Tensor) -> torch.Tensor: | |
| """ | |
| Get relative positional embeddings according to the relative positions of | |
| query and key sizes. | |
| Args: | |
| q_size (int): size of query q. | |
| k_size (int): size of key k. | |
| rel_pos (Tensor): relative position embeddings (L, C). | |
| Returns: | |
| Extracted positional embeddings according to relative positions. | |
| """ | |
| max_rel_dist = int(2 * max(q_size, k_size) - 1) | |
| # Interpolate rel pos if needed. | |
| if rel_pos.shape[0] != max_rel_dist: | |
| # Interpolate rel pos. | |
| rel_pos_resized = F.interpolate( | |
| rel_pos.reshape(1, rel_pos.shape[0], -1).permute(0, 2, 1), | |
| size=max_rel_dist, | |
| mode="linear", | |
| ) | |
| rel_pos_resized = rel_pos_resized.reshape(-1, max_rel_dist).permute(1, 0) | |
| else: | |
| rel_pos_resized = rel_pos | |
| # Scale the coords with short length if shapes for q and k are different. | |
| q_coords = torch.arange(q_size)[:, None] * max(k_size / q_size, 1.0) | |
| k_coords = torch.arange(k_size)[None, :] * max(q_size / k_size, 1.0) | |
| relative_coords = (q_coords - k_coords) + (k_size - 1) * max(q_size / k_size, 1.0) | |
| return rel_pos_resized[relative_coords.long()] | |
| def add_decomposed_rel_pos( | |
| attn: torch.Tensor, | |
| q: torch.Tensor, | |
| rel_pos_h: torch.Tensor, | |
| rel_pos_w: torch.Tensor, | |
| q_size: Tuple[int, int], | |
| k_size: Tuple[int, int], | |
| ) -> torch.Tensor: | |
| """ | |
| Calculate decomposed Relative Positional Embeddings from :paper:`mvitv2`. | |
| https://github.com/facebookresearch/mvit/blob/19786631e330df9f3622e5402b4a419a263a2c80/mvit/models/attention.py # noqa B950 | |
| Args: | |
| attn (Tensor): attention map. | |
| q (Tensor): query q in the attention layer with shape (B, q_h * q_w, C). | |
| rel_pos_h (Tensor): relative position embeddings (Lh, C) for height axis. | |
| rel_pos_w (Tensor): relative position embeddings (Lw, C) for width axis. | |
| q_size (Tuple): spatial sequence size of query q with (q_h, q_w). | |
| k_size (Tuple): spatial sequence size of key k with (k_h, k_w). | |
| Returns: | |
| attn (Tensor): attention map with added relative positional embeddings. | |
| """ | |
| q_h, q_w = q_size | |
| k_h, k_w = k_size | |
| Rh = get_rel_pos(q_h, k_h, rel_pos_h) | |
| Rw = get_rel_pos(q_w, k_w, rel_pos_w) | |
| B, _, dim = q.shape | |
| r_q = q.reshape(B, q_h, q_w, dim) | |
| rel_h = torch.einsum("bhwc,hkc->bhwk", r_q, Rh) | |
| rel_w = torch.einsum("bhwc,wkc->bhwk", r_q, Rw) | |
| attn = ( | |
| attn.view(B, q_h, q_w, k_h, k_w) | |
| + rel_h[:, :, :, :, None] | |
| + rel_w[:, :, :, None, :] | |
| ).view(B, q_h * q_w, k_h * k_w) | |
| return attn | |
| class PatchEmbed(nn.Module): | |
| """ | |
| Image to Patch Embedding. | |
| """ | |
| def __init__( | |
| self, | |
| kernel_size: Tuple[int, int] = (16, 16), | |
| stride: Tuple[int, int] = (16, 16), | |
| padding: Tuple[int, int] = (0, 0), | |
| in_chans: int = 3, | |
| embed_dim: int = 768, | |
| ) -> None: | |
| """ | |
| Args: | |
| kernel_size (Tuple): kernel size of the projection layer. | |
| stride (Tuple): stride of the projection layer. | |
| padding (Tuple): padding size of the projection layer. | |
| in_chans (int): Number of input image channels. | |
| embed_dim (int): Patch embedding dimension. | |
| """ | |
| super().__init__() | |
| self.proj = nn.Conv2d( | |
| in_chans, embed_dim, kernel_size=kernel_size, stride=stride, padding=padding | |
| ) | |
| def forward(self, x: torch.Tensor) -> torch.Tensor: | |
| x = self.proj(x) | |
| # B C H W -> B H W C | |
| x = x.permute(0, 2, 3, 1) | |
| return x | |
| class SAMViTCfg: | |
| image_size: Union[Tuple[int, int], int] = 1024 | |
| width: int = 1024 | |
| layers: int = 23 | |
| heads: int = 16 | |
| patch_size: int = 16 | |
| window_size: int = 14 | |
| prompt_embed_dim: int = 256 | |
| global_attn_indexes: Union[List[int], Tuple[int]] = (5, 11, 17, 23) | |
| downsample_channels: Union[List[int], Tuple[int]] = (512, 1024) | |
| SAM_MODEL_CONFIG = { | |
| "sam_vit_b": { | |
| "width": 768, | |
| "layers": 12, | |
| "heads": 12, | |
| "global_attn_indexes": [2, 5, 8, 11], | |
| "downsample_channels": (), | |
| }, | |
| "sam_b_downsample": { | |
| "width": 768, | |
| "layers": 12, | |
| "heads": 12, | |
| "global_attn_indexes": [2, 5, 8, 11], | |
| "downsample_channels": (512, 1024), | |
| }, | |
| "sam_vit_l": { | |
| "width": 1024, | |
| "layers": 24, | |
| "heads": 16, | |
| "global_attn_indexes": [5, 11, 17, 23], | |
| "downsample_channels": (), | |
| }, | |
| "sam_vit_h": { | |
| "width": 1280, | |
| "layers": 32, | |
| "heads": 16, | |
| "global_attn_indexes": [7, 15, 23, 31], | |
| "downsample_channels": (), | |
| }, | |
| } | |
| def create_sam_vit( | |
| model_name: str = "sam_b_downsample", | |
| image_size: int = 1024, | |
| ckpt_path: str = "", | |
| **kwargs, | |
| ): | |
| assert ( | |
| model_name in SAM_MODEL_CONFIG.keys() | |
| ), f"model name: {model_name} should be in {SAM_MODEL_CONFIG.keys()}" | |
| sam_cfg = SAMViTCfg(**SAM_MODEL_CONFIG[model_name]) | |
| image_encoder = ImageEncoderViT( | |
| depth=sam_cfg.layers, | |
| embed_dim=sam_cfg.width, | |
| img_size=image_size, | |
| mlp_ratio=4, | |
| norm_layer=partial(torch.nn.LayerNorm, eps=1e-6), | |
| num_heads=sam_cfg.heads, | |
| patch_size=sam_cfg.patch_size, | |
| qkv_bias=True, | |
| use_rel_pos=True, | |
| global_attn_indexes=sam_cfg.global_attn_indexes, | |
| window_size=14, | |
| out_chans=sam_cfg.prompt_embed_dim, | |
| downsample_channels=sam_cfg.downsample_channels, | |
| ) | |
| if ckpt_path: | |
| state_dict = torch.load(ckpt_path) | |
| image_encoder.load_state_dict(state_dict, strict=False) | |
| print(f"SAM-ViT restores from {ckpt_path}") | |
| return image_encoder | |
| if __name__ == "__main__": | |
| x = torch.zeros(2, 3, 1024, 1024).bfloat16() | |
| # x.permute(0, 3, 1, 2) | |
| net = create_sam_vit().bfloat16() | |
| out = net(x) | |
| print(x.shape, out.shape) | |