File size: 10,804 Bytes
340bf36
 
 
 
 
2d92cf6
 
0c1aca6
 
340bf36
 
 
9adb68a
340bf36
 
 
 
 
 
9adb68a
340bf36
 
 
 
d7a96cf
9adb68a
d7a96cf
340bf36
 
 
 
 
 
 
 
 
b79b7ed
d7a96cf
9adb68a
d7a96cf
 
340bf36
b79b7ed
 
 
 
 
340bf36
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d7a96cf
187c027
 
d7a96cf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
187c027
 
340bf36
 
 
 
 
 
 
 
 
 
 
 
 
 
5b1aacb
 
340bf36
 
 
 
 
 
 
 
87ac526
 
 
 
 
 
 
 
2d92cf6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
340bf36
 
 
2d92cf6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
340bf36
 
 
9adb68a
 
 
 
340bf36
 
 
 
 
9adb68a
 
 
340bf36
 
d7a96cf
9adb68a
340bf36
9adb68a
d7a96cf
9adb68a
d7a96cf
340bf36
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9adb68a
340bf36
 
2d92cf6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
import ibis
from ibis import _
from variables import *
import altair as alt
import re
from leafmap.foliumap import PMTilesMapLibreTooltip
from branca.element import Template
import pandas as pd
import datetime

def get_counties(state_selection):
    if state_selection != 'All':
        counties = tpl_table.filter(_.state == state_selection).select('county').distinct().order_by('county').execute()
        counties = ['All'] + counties['county'].tolist()
    else: 
        counties = None
    return counties
     
def filter_data(table, state_choice, county_choice, year_range):

    min_year, max_year = year_range
    gdf = (table.filter(_.year>=(min_year))
           .filter(_.year<=(max_year))
          )
    if state_choice != "All":
        gdf = gdf.filter(_.state == state_choice)
        if (county_choice != "All") and (county_choice):
            gdf = gdf.filter(_.county == county_choice)
    return gdf

def group_data(table, style_choice):
    metric_col = style_choice_columns[style_choice]
    gdf = table.group_by(_.year).agg(total_amount = _[metric_col].sum())
    return gdf
    

def get_bounds(state_choice, county_choice, m):
    if state_choice != "All":
        gdf = county_bounds.filter(_.state == state_choice)

        if (county_choice != "All") and (county_choice):
            gdf = gdf.filter(_.county == county_choice)
        bounds = list(gdf.execute().total_bounds)   
    else:
        # if selecting all states, use these bounds
        bounds = [-167.80517179043034, 19.015233153742425, -66.97618043381198, 70.03327935821838]
    return bounds


def get_bar(df, style_choice, group_col, metric_col, paint, x_lab, y_lab, title):
    if isinstance(paint, dict):
        domain = [stop[0] for stop in paint['stops']]
        range_ = [stop[1] for stop in paint['stops']]
    
    chart = (alt.Chart(df)
                .mark_bar(stroke="black", strokeWidth=0.1)
                .encode(
                    x=alt.X(f"{group_col}:N", axis=alt.Axis(title=x_lab)),
                    y=alt.Y(f"{metric_col}:Q", axis=alt.Axis(title=y_lab)),
                    tooltip=[alt.Tooltip(group_col, type="nominal"), alt.Tooltip(metric_col, type="quantitative")],
                    )
             .properties(title=f"{title}")
            )
    st.altair_chart(chart, use_container_width = True)
    return 

def tpl_style_default(paint,pmtiles):
    source_layer_name = re.sub(r'\W+', '', os.path.splitext(os.path.basename(pmtiles))[0]) #stripping hyphens to get layer name 
    style =  {
    "version": 8,
    "sources": {
        "tpl": {
            "type": "vector",
            "url": "pmtiles://" + pmtiles,
            "attribution": "TPL"
        },
    },
    "layers": [{
            "id": "tpl",
            "source": "tpl",
            "source-layer": source_layer_name,
            "type": "fill",
            "paint": {
                "fill-color": paint,
                "fill-opacity": 1
            }
        }]
    }
    return style

def tpl_style(ids, paint, pmtiles):
    source_layer_name = re.sub(r'\W+', '', os.path.splitext(os.path.basename(pmtiles))[0]) #stripping hyphens to get layer name 
    style =  {
    "version": 8,
    "sources": {
        "tpl": {
            "type": "vector",
            "url": "pmtiles://" + pmtiles,
            "attribution": "TPL"
        },
    },
    "layers": [{
            "id": "tpl",
            "source": "tpl",
            "source-layer": source_layer_name,
            "type": "fill",
            # 'filter': ["match", ["get", 'fid'], ids, True, False],
            'filter': ['in', ['get', 'fid'], ["literal", ids]],
            "paint": {
                "fill-color": paint,
                "fill-opacity": 1
            }
        }]
    }
    return style



    
def extract_columns(sql_query):
    # Find all substrings inside double quotes
    columns = list(dict.fromkeys(re.findall(r'"(.*?)"', sql_query)))
    return columns
    
def get_colorbar(gdf, paint):
    """
    Extracts color hex codes and value range (vmin, vmax) from paint
    to make a color bar. Used for mapping continuous data. 
    """
    # numbers = [x for x in paint if isinstance(x, (int, float))]
    vmin = gdf.amount.min().execute()
    vmax = gdf.amount.max().execute()
    # min(numbers), max(numbers),
    colors = [x for x in paint if isinstance(x, str) and x.startswith('#')]
    orientation = 'vertical'
    position = 'bottom-right'
    label = "Acquisition Cost"
    height = 3
    width = .2
    return colors, vmin, vmax, orientation, position, label, height, width
    

def get_legend(paint, leafmap_backend, df = None, column = None):
    """
    Generates a legend dictionary with color mapping and formatting adjustments.
    """
    if 'stops' in paint:
        legend = {cat: color for cat, color in paint['stops']}
    else:
        legend = {}
    if df is not None:
        if ~df.empty:
            categories = df[column].to_list() #if we filter out categories, don't show them on the legend 
            legend = {cat: color for cat, color in legend.items() if str(cat) in categories}
    position, fontsize, bg_color = 'bottomright', 15, 'white'
    controls={'navigation': 'bottom-left', 
              'fullscreen':'bottom-left'}
    shape_type = 'circle'

    if leafmap_backend == 'maplibregl':
        position = 'bottom-right'
    return legend, position, bg_color, fontsize, shape_type, controls 


@st.cache_data
def tpl_summary(_df):
    summary = _df.group_by(_.manager_type).agg(amount = _.amount.sum())
    public_dollars = round( summary.filter(_.manager_type.isin(["FED", "STAT", "LOC", "DIST"])).agg(total = _.amount.sum()).to_pandas().values[0][0] )
    private_dollars = round( summary.filter(_.manager_type.isin(["PVT", "NGO"])).agg(total = _.amount.sum()).to_pandas().values[0][0] )
    total_dollars = round( summary.agg(total = _.amount.sum()).to_pandas().values[0][0] )
    return public_dollars, private_dollars, total_dollars

# @st.cache_data
def calc_delta(_df):
    deltas = (_df
     .group_by(_.manager_type, _.year)
     .agg(amount = _.amount.sum())
     .mutate(total = _.amount.cumsum(order_by=_.year, group_by=_.manager_type))
     .mutate(lag = _.total.lag(1))
     .mutate(delta = (100*(_.total - _.lag) / _.total).round(2)  )
     # .filter(_.year >=2019)
     .select(_.manager_type, _.year, _.total, _.lag, _.delta)
    )
    public_delta = deltas.filter(_.manager_type.isin(["FED", "STAT", "LOC", "DIST"])).to_pandas()
    public_delta =  0 if public_delta.empty else public_delta.delta[-1]
    private_delta = deltas.filter(_.manager_type.isin(["PVT", "NGO"])).to_pandas()
    private_delta =  0 if private_delta.empty else private_delta.delta[-1]
    return public_delta, private_delta
    
# @st.cache_data
def get_area_totals(_df, column):
    return _df.group_by(_[column]).agg(area = _.Shape_Area.sum() / (100*100)).to_pandas()


# @st.cache_data
def bar(area_totals, column, paint):
    plt = alt.Chart(area_totals).mark_bar().encode(
            x=column,
            y=alt.Y("area"),
        ).properties(height=350)
    return plt

# @st.cache_data
def chart_time(timeseries, column, paint):
    domain = [stop[0] for stop in paint['stops']]
    range_ = [stop[1] for stop in paint['stops']]
    # use the colors 
    plt = alt.Chart(timeseries).mark_line().encode(
        x='year:O',
        y = alt.Y('amount:Q'),
            color=alt.Color(column,scale= alt.Scale(domain=domain, range=range_))
    ).properties(height=350)
    return plt
    
class CustomTooltip(PMTilesMapLibreTooltip):
    _template = Template("""
    {% macro script(this, kwargs) -%}
    var maplibre = {{ this._parent.get_name() }}.getMaplibreMap();
    const popup = new maplibregl.Popup({ closeButton: false, closeOnClick: false });

    maplibre.on('mousemove', function(e) {
        const features = maplibre.queryRenderedFeatures(e.point);
        const filtered = features.filter(f => f.properties && f.properties.fid);

        if (filtered.length) {
            const props = filtered[0].properties;
            const html = `
                <div><strong>fid:</strong> ${props.fid || 'N/A'}</div>
                <div><strong>Site:</strong> ${props.site || 'N/A'}</div>
                <div><strong>Sponsor:</strong> ${props.sponsor || 'N/A'}</div>
                <div><strong>Program:</strong> ${props.program || 'N/A'}</div>
                <div><strong>State:</strong> ${props.state || 'N/A'}</div>
                <div><strong>County:</strong> ${props.county || 'N/A'}</div>
                <div><strong>Year:</strong> ${props.year || 'N/A'}</div>
                <div><strong>Manager:</strong> ${props.manager || 'N/A'}</div>
                <div>
                    <strong>Amount:</strong> ${
                        props.amount
                            ? `$${parseFloat(props.amount).toLocaleString('en-US', { minimumFractionDigits: 2, maximumFractionDigits: 2 })}`
                            : 'N/A'
                    }
                </div>
                <div>
                    <strong>Acres:</strong> ${
                        props.acres
                            ? parseFloat(props.acres).toLocaleString('en-US', { minimumFractionDigits: 2, maximumFractionDigits: 2 })
                            : 'N/A'
                    }
                </div>
            `;
            popup.setLngLat(e.lngLat).setHTML(html).addTo(maplibre);
            if (popup._container) {
                popup._container.style.zIndex = 9999;
            }
        } else {
            popup.remove();
        }
    });
    {% endmacro %}
    """)
    
minio_key = os.getenv("MINIO_KEY")
if minio_key is None:
    minio_key = st.secrets["MINIO_KEY"]

minio_secret = os.getenv("MINIO_SECRET")
if minio_secret is None:
    minio_secret = st.secrets["MINIO_SECRET"]

def minio_logger(consent, query, sql_query, llm_explanation, llm_choice, filename="query_log.csv", bucket="shared-tpl",
                 key=minio_key, secret=minio_secret,
                 endpoint="minio.carlboettiger.info"):
    mc = minio.Minio(endpoint, key, secret)
    mc.fget_object(bucket, filename, filename)
    log = pd.read_csv(filename)
    timestamp = datetime.datetime.now(datetime.timezone.utc).strftime("%Y-%m-%d %H:%M:%S")
    if consent:
        df = pd.DataFrame({"timestamp": [timestamp], "user_query": [query], "llm_sql": [sql_query], "llm_explanation": [llm_explanation], "llm_choice":[llm_choice]})

    # if user opted out, do not store query
    else:  
        df = pd.DataFrame({"timestamp": [timestamp], "user_query": ['USER OPTED OUT'], "llm_sql": [''], "llm_explanation": [''], "llm_choice":['']})
    
    pd.concat([log,df]).to_csv(filename, index=False, header=True)
    mc.fput_object(bucket, filename, filename, content_type="text/csv")