Spaces:
Running
Running
| import gradio as gr | |
| import numpy as np | |
| import os | |
| from PIL import Image | |
| import requests | |
| from io import BytesIO | |
| import io | |
| import base64 | |
| hf_token = os.environ.get("HF_TOKEN_API_DEMO") # we get it from a secret env variable, such that it's private | |
| auth_headers = {"api_token": hf_token} | |
| def convert_image_to_base64_string(mask_image): | |
| buffer = io.BytesIO() | |
| mask_image.save(buffer, format="PNG") # You can choose the format (e.g., "JPEG", "PNG") | |
| # Encode the buffer in base64 | |
| image_base64_string = base64.b64encode(buffer.getvalue()).decode('utf-8') | |
| return f",{image_base64_string}" # for some reason the funciton which downloads image from base64 expects prefix of "," which is redundant in the url | |
| def download_image(url): | |
| response = requests.get(url) | |
| img_bytes = BytesIO(response.content) | |
| return Image.open(img_bytes).convert("RGB") | |
| def lifestyle_shot_by_text_api_call(image_base64_file, prompt): | |
| url = "http://engine.prod.bria-api.com/v1/product/lifestyle_shot_by_text" | |
| payload = { | |
| "file": image_base64_file, | |
| "scene_description": prompt, | |
| "num_results": 1, | |
| "sync": True, | |
| "original_quality": True, | |
| "optimize_description": True, | |
| } | |
| response = requests.post(url, json=payload, headers=auth_headers) | |
| response = response.json() | |
| res_image = download_image(response['result'][0][0]) | |
| return res_image | |
| def predict_ref_by_text(input_image, prompt): | |
| # init_image = Image.fromarray(dict['background'][:, :, :3], 'RGB') #dict['background'].convert("RGB")#.resize((1024, 1024)) | |
| # mask = Image.fromarray(dict['layers'][0][:,:,3], 'L') #dict['layers'].convert("RGB")#.resize((1024, 1024)) | |
| image_base64_file = convert_image_to_base64_string(input_image) | |
| gen_img = lifestyle_shot_by_text_api_call(image_base64_file, prompt) | |
| return gen_img | |
| def lifestyle_shot_by_image_api_call(image_base64_file, ref_image_base64_file): | |
| url = "http://engine.prod.bria-api.com/v1/product/lifestyle_shot_by_image" | |
| payload = { | |
| "file": image_base64_file, | |
| "ref_image_file": ref_image_base64_file, | |
| "num_results": 1, | |
| "sync": True, | |
| "original_quality": True, | |
| "optimize_description": True, | |
| } | |
| response = requests.post(url, json=payload, headers=auth_headers) | |
| response = response.json() | |
| res_image = download_image(response['result'][0][0]) | |
| return res_image | |
| def predict_ref_by_image(init_image, ref_image): | |
| image_base64_file = convert_image_to_base64_string(init_image) | |
| ref_base64_file = convert_image_to_base64_string(ref_image) | |
| gen_img = lifestyle_shot_by_image_api_call(image_base64_file, ref_base64_file) | |
| return gen_img | |
| def on_change_prompt(img: Image.Image | None, prompt: str | None): | |
| return gr.update(interactive=bool(img and prompt)) | |
| css = ''' | |
| .gradio-container{max-width: 1100px !important} | |
| #image_upload{min-height:400px} | |
| #image_upload [data-testid="image"], #image_upload [data-testid="image"] > div{min-height: 400px} | |
| #mask_radio .gr-form{background:transparent; border: none} | |
| #word_mask{margin-top: .75em !important} | |
| #word_mask textarea:disabled{opacity: 0.3} | |
| .footer {margin-bottom: 45px;margin-top: 35px;text-align: center;border-bottom: 1px solid #e5e5e5} | |
| .footer>p {font-size: .8rem; display: inline-block; padding: 0 10px;transform: translateY(10px);background: white} | |
| .dark .footer {border-color: #303030} | |
| .dark .footer>p {background: #0b0f19} | |
| .acknowledgments h4{margin: 1.25em 0 .25em 0;font-weight: bold;font-size: 115%} | |
| #image_upload .touch-none{display: flex} | |
| @keyframes spin { | |
| from { | |
| transform: rotate(0deg); | |
| } | |
| to { | |
| transform: rotate(360deg); | |
| } | |
| } | |
| #share-btn-container {padding-left: 0.5rem !important; padding-right: 0.5rem !important; background-color: #000000; justify-content: center; align-items: center; border-radius: 9999px !important; max-width: 13rem; margin-left: auto;} | |
| div#share-btn-container > div {flex-direction: row;background: black;align-items: center} | |
| #share-btn-container:hover {background-color: #060606} | |
| #share-btn {all: initial; color: #ffffff;font-weight: 600; cursor:pointer; font-family: 'IBM Plex Sans', sans-serif; margin-left: 0.5rem !important; padding-top: 0.5rem !important; padding-bottom: 0.5rem !important;right:0;} | |
| #share-btn * {all: unset} | |
| #share-btn-container div:nth-child(-n+2){width: auto !important;min-height: 0px !important;} | |
| #share-btn-container .wrap {display: none !important} | |
| #share-btn-container.hidden {display: none!important} | |
| #prompt input{width: calc(100% - 160px);border-top-right-radius: 0px;border-bottom-right-radius: 0px;} | |
| #run_button { | |
| width: 100%; | |
| height: 50px; /* Set a fixed height for the button */ | |
| display: flex; | |
| align-items: center; | |
| justify-content: center; | |
| } | |
| #output-img img, #image_upload img { | |
| object-fit: contain; /* Ensure aspect ratio is preserved */ | |
| width: 100%; | |
| height: auto; /* Let height adjust automatically */ | |
| } | |
| #prompt-container{margin-top:-18px;} | |
| #prompt-container .form{border-top-left-radius: 0;border-top-right-radius: 0} | |
| #image_upload{border-bottom-left-radius: 0px;border-bottom-right-radius: 0px} | |
| ''' | |
| image_blocks = gr.Blocks(css=css, elem_id="total-container") | |
| with image_blocks as demo: | |
| # with gr.Column(elem_id="col-container"): | |
| gr.Markdown("## Product Shot Generation API") | |
| gr.HTML(''' | |
| <p style="margin-bottom: 10px; font-size: 94%"> | |
| This demo showcases the <strong>Lifestyle Product Shot by Text</strong> and <strong>Lifestyle Product Shot by Image</strong> feature, enabling users to generate product backgrounds effortlessly.<br> | |
| With <strong>Lifestyle Product Shot by Text</strong>, users can create backgrounds using descriptive textual prompts, | |
| while <strong>Lifestyle Product Shot by Image</strong> allows backgrounds to be generated based on a reference image for inspiration.<br> | |
| The pipeline comprises multiple components, including <a href="https://huggingface.co/briaai/BRIA-2.3" target="_blank">briaai/BRIA-2.3</a>, | |
| <a href="https://huggingface.co/briaai/RMBG-2.0" target="_blank">briaai/RMBG-2.0</a>, <a href="https://huggingface.co/briaai/BRIA-2.3-ControlNet-BG-Gen" target="_blank">briaai/BRIA-2.3-ControlNet-BG-Gen</a> and | |
| <a href="https://huggingface.co/briaai/Image-Prompt" target="_blank">briaai/Image-Prompt</a>, all trained on licensed data.<br> | |
| This ensures full legal liability coverage for copyright and privacy infringement.<br> | |
| Notes:<br> | |
| - High-resolution images may take longer to process.<br> | |
| - For best results in reference by image: make sure the foreground in the image is already located in the wanted position and scale, relative to the elements in the reference image.<br><br> | |
| </p> | |
| <p style="margin-bottom: 10px; font-size: 94%"> | |
| API Endpoint available on: <a href="https://fal.ai/models/fal-ai/bria/product-shot" target="_blank">fal.ai</a><br> | |
| ComfyUI node is available here: <a href="https://github.com/Bria-AI/ComfyUI-BRIA-API" target="_blank">ComfyUI Node</a> | |
| </p> | |
| ''') | |
| with gr.Tab(label="By scene description", id="tab_prompt"): | |
| with gr.Row(): | |
| with gr.Column(): | |
| # image = gr.ImageEditor(sources=["upload"], layers=False, transforms=[], | |
| # brush=gr.Brush(colors=["#000000"], color_mode="fixed"), | |
| # ) | |
| image = gr.Image(type="pil", label="Input") | |
| prompt = gr.Textbox(label="scene description", placeholder="Enter your scene description here...") | |
| with gr.Row(elem_id="prompt-container", equal_height=True): | |
| with gr.Column(): | |
| btn = gr.Button("Generate Product Shot!", elem_id="run_button") | |
| with gr.Column(): | |
| image_out = gr.Image(label="Output", elem_id="output-img") | |
| # Button click will trigger the inpainting function (now with prompt included) | |
| for inp in [image, prompt]: | |
| inp.change( | |
| fn=on_change_prompt, | |
| inputs=[image, prompt], | |
| outputs=[btn], | |
| ) | |
| btn.click(fn=predict_ref_by_text, inputs=[image, prompt], outputs=[image_out], api_name='run') | |
| with gr.Tab(label="By reference image", id="tab_ref_image"): | |
| with gr.Row(): | |
| with gr.Column(): | |
| image = gr.Image(type="pil", label="Input") | |
| ref_image = gr.Image(type="pil", label="Reference Image") | |
| with gr.Row(elem_id="prompt-container", equal_height=True): | |
| with gr.Column(): | |
| btn = gr.Button("Generate Product Shot!", elem_id="run_button") | |
| with gr.Column(): | |
| image_out = gr.Image(label="Output", elem_id="output-img") | |
| # Button click will trigger the inpainting function (now with prompt included) | |
| btn.click(fn=predict_ref_by_image, inputs=[image, ref_image], outputs=[image_out], api_name='run') | |
| gr.HTML( | |
| """ | |
| <div class="footer"> | |
| <p>Model by <a href="https://huggingface.co/diffusers" style="text-decoration: underline;" target="_blank">Diffusers</a> - Gradio Demo by 🤗 Hugging Face | |
| </p> | |
| </div> | |
| """ | |
| ) | |
| image_blocks.queue(max_size=25, api_open=False).launch(show_api=False) |