Update app.py
Browse files
app.py
CHANGED
|
@@ -67,7 +67,8 @@ def predict_image(img, confidence_threshold):
|
|
| 67 |
try:
|
| 68 |
prediction_1 = clf_1(img_pil)
|
| 69 |
result_1 = {pred['label']: pred['score'] for pred in prediction_1}
|
| 70 |
-
|
|
|
|
| 71 |
# Ensure the result dictionary contains all class names
|
| 72 |
for class_name in class_names_1:
|
| 73 |
if class_name not in result_1:
|
|
@@ -109,8 +110,8 @@ def predict_image(img, confidence_threshold):
|
|
| 109 |
logits_3 = outputs_3.logits
|
| 110 |
probabilities_3 = softmax(logits_3.cpu().numpy()[0])
|
| 111 |
result_3 = {
|
| 112 |
-
labels_3[0]: float(probabilities_3[0]), # AI
|
| 113 |
labels_3[1]: float(probabilities_3[1]) # Real
|
|
|
|
| 114 |
}
|
| 115 |
print(result_3)
|
| 116 |
# Ensure the result dictionary contains all class names
|
|
@@ -135,8 +136,8 @@ def predict_image(img, confidence_threshold):
|
|
| 135 |
logits_4 = outputs_4.logits
|
| 136 |
probabilities_4 = softmax(logits_4.cpu().numpy()[0])
|
| 137 |
result_4 = {
|
| 138 |
-
labels_4[0]: float(probabilities_4[0]), # AI
|
| 139 |
labels_4[1]: float(probabilities_4[1]) # Real
|
|
|
|
| 140 |
}
|
| 141 |
print(result_4)
|
| 142 |
# Ensure the result dictionary contains all class names
|
|
|
|
| 67 |
try:
|
| 68 |
prediction_1 = clf_1(img_pil)
|
| 69 |
result_1 = {pred['label']: pred['score'] for pred in prediction_1}
|
| 70 |
+
result_1output = [1, result_1['artificial'], result_1['real']]
|
| 71 |
+
print(result_1output)
|
| 72 |
# Ensure the result dictionary contains all class names
|
| 73 |
for class_name in class_names_1:
|
| 74 |
if class_name not in result_1:
|
|
|
|
| 110 |
logits_3 = outputs_3.logits
|
| 111 |
probabilities_3 = softmax(logits_3.cpu().numpy()[0])
|
| 112 |
result_3 = {
|
|
|
|
| 113 |
labels_3[1]: float(probabilities_3[1]) # Real
|
| 114 |
+
labels_3[0]: float(probabilities_3[0]), # AI
|
| 115 |
}
|
| 116 |
print(result_3)
|
| 117 |
# Ensure the result dictionary contains all class names
|
|
|
|
| 136 |
logits_4 = outputs_4.logits
|
| 137 |
probabilities_4 = softmax(logits_4.cpu().numpy()[0])
|
| 138 |
result_4 = {
|
|
|
|
| 139 |
labels_4[1]: float(probabilities_4[1]) # Real
|
| 140 |
+
labels_4[0]: float(probabilities_4[0]), # AI
|
| 141 |
}
|
| 142 |
print(result_4)
|
| 143 |
# Ensure the result dictionary contains all class names
|