Spaces:
Runtime error
Runtime error
| import gradio as gr | |
| import torch | |
| from ultralytics import YOLO | |
| import cv2 | |
| import tempfile | |
| # Load the trained YOLOv8 model | |
| model = YOLO('best.pt') | |
| def predict(image): | |
| results = model(image) | |
| # You might want to process results to return bounding boxes, class labels, etc. | |
| annotated_image = results[0].plot() # plot the results on the image | |
| return annotated_image | |
| def predict_video(video): | |
| # Read the video file | |
| cap = cv2.VideoCapture(video) | |
| width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH)) | |
| height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT)) | |
| fps = int(cap.get(cv2.CAP_PROP_FPS)) | |
| # Create a temporary file to save the output video | |
| out_file = tempfile.NamedTemporaryFile(delete=False, suffix='.mp4') | |
| out_path = out_file.name | |
| # Define the codec and create VideoWriter object | |
| fourcc = cv2.VideoWriter_fourcc(*'mp4v') | |
| out = cv2.VideoWriter(out_path, fourcc, fps, (width, height)) | |
| while cap.isOpened(): | |
| ret, frame = cap.read() | |
| if not ret: | |
| break | |
| results = model(frame) | |
| annotated_frame = results[0].plot() # plot the results on the frame | |
| out.write(annotated_frame) | |
| cap.release() | |
| out.release() | |
| return out_path | |
| # Create Gradio interface | |
| interface = gr.Interface( | |
| fn=lambda img, vid: (predict(img), predict_video(vid)), | |
| inputs=[ | |
| gr.inputs.Image(type="numpy", label="Input Image"), | |
| gr.inputs.Video(label="Input Video") | |
| ], | |
| outputs=[ | |
| gr.outputs.Image(type="numpy", label="Output Image"), | |
| gr.outputs.Video(label="Output Video") | |
| ], | |
| title="YOLOv8 Object Detection", | |
| description="Upload an image or a video and get the object detection results using a YOLOv8 model." | |
| ) | |
| if __name__ == "__main__": | |
| interface.launch() | |