Spaces:
Runtime error
Runtime error
File size: 19,923 Bytes
5e0154b 2fd4aea f3f0fe2 5e0154b 2fd4aea 5e0154b 2fd4aea |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 |
---
title: Browsergym_env Environment Server
emoji: π
colorFrom: gray
colorTo: purple
sdk: docker
pinned: false
app_port: 8000
base_path: /web
tags:
- openenv
---
# Browsergym_env Environment Server
FastAPI server for browsergym_env environment powered by Meta's OpenEnv.
## About
This Space provides a containerized environment for browsergym_env interactions.
Built with FastAPI and OpenEnv framework.
## Web Interface
This deployment includes an interactive web interface for exploring the environment:
- **HumanAgent Interface**: Interact with the environment using a web form
- **State Observer**: Real-time view of environment state and action history
- **Live Updates**: WebSocket-based real-time updates
Access the web interface at: `/web`
## API Documentation
Visit `/docs` for interactive API documentation.
## Health Check
The environment provides a health check endpoint at `/health`.
# BrowserGym Environment
BrowserGym is a unified framework for web-based agent tasks that provides access to multiple benchmarks under a single Gymnasium-compatible API. This integration brings the complete training-to-evaluation pipeline for web agents into OpenEnv.
## Why BrowserGym?
BrowserGym provides a complete pipeline for developing web agents: train on simple tasks, then evaluate on realistic websites.
**What are these benchmarks?**
- **MiniWoB++ (Training)**: 100+ synthetic web tasks like "click this button", "fill out this form", "select from dropdown". Each task is a simple webpage with a clear objective. Fast resets, randomized variations, dense rewards. Perfect for learning basic web navigation skills. **No external setup needed** - tasks run in isolated browser sessions.
- **WebArena (Evaluation)**: 812 tasks on real websites (e-commerce, forums, GitLab, Wikipedia). Tasks like "find the cheapest laptop and add to cart" or "create a merge request for bug #123". Multi-step, requires reasoning, sparse rewards. Tests if your agent can handle actual websites. **Requires running 7 backend services** (shopping site, GitLab instance, etc).
- **VisualWebArena**: Similar to WebArena but requires visual understanding - agents need to interpret images, identify UI elements visually, handle multimodal content.
- **WorkArena**: Enterprise software tasks (CRM, project management, business workflows). Tests automation on corporate-style applications.
**The training β evaluation pipeline:**
1. Train on MiniWoB (simple, controlled, fast iterations)
2. Evaluate on WebArena (complex, realistic, measures real-world capability)
**Key advantage**: You can start training immediately with MiniWoB. No need to set up infrastructure just to test if your code works.
## Quick Start - Training (MiniWoB)
### No Setup Required! π
```python
from envs.browsergym_env import BrowserGymEnv, BrowserGymAction
# Create environment for MiniWoB training task
env = BrowserGymEnv.from_docker_image(
"ghcr.io/openenv/browsergym-env:latest",
environment={
"BROWSERGYM_BENCHMARK": "miniwob",
"BROWSERGYM_TASK_NAME": "click-test", # or "click-button", "click-dialog", etc.
}
)
# Train your agent!
for episode in range(1000):
result = env.reset()
print(f"Goal: {result.observation.goal}")
done = False
while not done:
# Your agent decides what to do
action_str = agent.get_action(result.observation.text)
action = BrowserGymAction(action_str=action_str)
result = env.step(action)
done = result.done
print(f"Reward: {result.reward}")
env.close()
```
### Available Tasks by Benchmark
#### MiniWoB++ Tasks (Training - 100+ tasks)
MiniWoB tasks are organized by difficulty and type. Here are the main categories:
**Click Tasks** (Basic interaction)
| Task Name | Description | Difficulty |
|-----------|-------------|------------|
| `click-test` | Click a single button | β Easy |
| `click-button` | Click button with specific text | β Easy |
| `click-button-sequence` | Click buttons in order | ββ Medium |
| `click-checkboxes` | Select specific checkboxes | ββ Medium |
| `click-checkboxes-soft` | Select checkboxes (multiple valid) | ββ Medium |
| `click-checkboxes-large` | Many checkboxes to select from | ββ Medium |
| `click-checkboxes-transfer` | Transfer learning variation | ββ Medium |
| `click-dialog` | Click correct button in dialog | β Easy |
| `click-dialog-2` | More complex dialog | ββ Medium |
| `click-link` | Click on a link | β Easy |
| `click-option` | Select from dropdown | ββ Medium |
| `click-pie` | Click on pie chart slice | ββ Medium |
| `click-scroll-list` | Click item in scrollable list | βββ Hard |
| `click-shades` | Click on specific color shade | ββ Medium |
| `click-shape` | Click on specific shape | ββ Medium |
| `click-tab` | Switch between tabs | ββ Medium |
| `click-tab-2` | More complex tab switching | βββ Hard |
| `click-widget` | Click on UI widget | ββ Medium |
**Text Entry Tasks** (Typing and forms)
| Task Name | Description | Difficulty |
|-----------|-------------|------------|
| `enter-text` | Type text into input field | β Easy |
| `enter-text-dynamic` | Dynamic text entry | ββ Medium |
| `enter-text-2` | Multiple text fields | ββ Medium |
| `enter-password` | Fill password field | β Easy |
| `enter-date` | Enter a date | ββ Medium |
| `enter-time` | Enter a time | ββ Medium |
| `login-user` | Complete login form | ββ Medium |
| `login-user-popup` | Login via popup | βββ Hard |
**Navigation Tasks** (Multi-step interaction)
| Task Name | Description | Difficulty |
|-----------|-------------|------------|
| `navigate-tree` | Navigate through tree structure | βββ Hard |
| `search-engine` | Use search interface | ββ Medium |
| `use-autocomplete` | Interact with autocomplete | βββ Hard |
| `book-flight` | Book a flight (complex form) | ββββ Very Hard |
| `choose-date` | Pick date from calendar | βββ Hard |
| `choose-date-easy` | Simplified date picker | ββ Medium |
| `choose-date-medium` | Medium difficulty date picker | βββ Hard |
| `choose-list` | Select from long list | ββ Medium |
**Visual/Spatial Tasks** (Requires visual understanding)
| Task Name | Description | Difficulty |
|-----------|-------------|------------|
| `count-sides` | Count sides of shape | ββ Medium |
| `count-shape` | Count specific shapes | ββ Medium |
| `find-word` | Find word in text | ββ Medium |
| `focus-text` | Focus on text element | β Easy |
| `focus-text-2` | More complex focus task | ββ Medium |
| `grid-coordinate` | Click grid coordinate | ββ Medium |
| `guess-number` | Guess a number game | βββ Hard |
| `identify-shape` | Identify shape type | ββ Medium |
| `read-table` | Extract info from table | βββ Hard |
| `read-table-2` | More complex table reading | βββ Hard |
**Email/Social Tasks** (Realistic scenarios)
| Task Name | Description | Difficulty |
|-----------|-------------|------------|
| `email-inbox` | Manage email inbox | ββββ Very Hard |
| `email-inbox-forward` | Forward emails | ββββ Very Hard |
| `email-inbox-nl` | Natural language email task | ββββ Very Hard |
| `email-inbox-star-reply` | Star and reply to emails | ββββ Very Hard |
| `social-media` | Social media interaction | ββββ Very Hard |
| `social-media-some` | Partial social media task | βββ Hard |
**Total:** 100+ tasks across all categories
**Usage:**
```python
# Easy task for quick testing
env = BrowserGymEnv(environment={"BROWSERGYM_TASK_NAME": "click-test"})
# Medium difficulty for training
env = BrowserGymEnv(environment={"BROWSERGYM_TASK_NAME": "click-checkboxes"})
# Hard task for evaluation
env = BrowserGymEnv(environment={"BROWSERGYM_TASK_NAME": "email-inbox"})
```
#### WebArena Tasks (Evaluation - 812 tasks)
WebArena tasks are organized by website and difficulty. Tasks are numbered 0-811.
**By Website:**
| Website | Task Count | Description | Example Tasks |
|---------|------------|-------------|---------------|
| Shopping | ~200 | E-commerce site | Search products, add to cart, checkout |
| Shopping Admin | ~150 | Admin panel | Manage products, orders, customers |
| Reddit | ~150 | Forum/social | Post, comment, search discussions |
| GitLab | ~200 | Code repository | Create issues, merge requests, review code |
| Wikipedia | ~100 | Knowledge base | Search, read, extract information |
| Map | ~12 | Location service | Find places, get directions |
**By Difficulty:**
| Difficulty | Task Count | Steps Required | Example |
|------------|------------|----------------|---------|
| Easy | ~200 | 1-5 steps | "Find the price of product X" |
| Medium | ~400 | 5-15 steps | "Add cheapest laptop to cart" |
| Hard | ~212 | 15+ steps | "Create merge request for bug fix" |
**Usage:**
```python
# Task 0 (usually easy)
env = BrowserGymEnv(environment={
"BROWSERGYM_BENCHMARK": "webarena",
"BROWSERGYM_TASK_NAME": "0",
"SHOPPING": "http://your-server:7770",
# ... other URLs
})
# Task 156 (GitLab merge request)
env = BrowserGymEnv(environment={
"BROWSERGYM_BENCHMARK": "webarena",
"BROWSERGYM_TASK_NAME": "156",
# ... URLs
})
```
**Note:** WebArena tasks require the full backend infrastructure. See [WebArena setup guide](https://github.com/web-arena-x/webarena/tree/main/environment_docker).
#### VisualWebArena Tasks (910 tasks)
Similar to WebArena but requires visual understanding. Tasks involve:
- Image-based reasoning
- Visual element identification
- Multimodal interaction (text + images)
#### WorkArena Tasks
Enterprise software automation tasks:
- CRM operations
- Project management
- Business workflows
**Full task lists:**
- [MiniWoB++ tasks](https://github.com/Farama-Foundation/miniwob-plusplus/tree/master/miniwob/environment)
- [WebArena tasks](https://github.com/web-arena-x/webarena/blob/main/config_files/)
- [BrowserGym documentation](https://github.com/ServiceNow/BrowserGym)
## Evaluation (WebArena)
### Prerequisites
WebArena requires setting up backend infrastructure. See the [WebArena documentation](https://github.com/web-arena-x/webarena/tree/main/environment_docker).
### Usage
```python
from envs.browsergym_env import BrowserGymEnv, BrowserGymAction
# Create environment for WebArena evaluation
env = BrowserGymEnv.from_docker_image(
"ghcr.io/openenv/browsergym-env:latest",
environment={
"BROWSERGYM_BENCHMARK": "webarena",
"BROWSERGYM_TASK_NAME": "0", # Task ID
# WebArena backend URLs (required)
"SHOPPING": "http://your-server:7770",
"SHOPPING_ADMIN": "http://your-server:7780/admin",
"REDDIT": "http://your-server:9999",
"GITLAB": "http://your-server:8023",
"MAP": "http://your-server:3000",
"WIKIPEDIA": "http://your-server:8888/wikipedia_en_all_maxi_2022-05/A/User:The_other_Kiwix_guy/Landing",
"HOMEPAGE": "http://your-server:4399",
}
)
# Evaluate your trained agent
result = env.reset()
while not result.done:
action_str = agent.get_action(result.observation)
action = BrowserGymAction(action_str=action_str)
result = env.step(action)
print(f"Success: {result.reward}")
env.close()
```
## Building the Docker Image
### Prerequisites
1. **Base Image**: Build the OpenEnv base image first:
```bash
# From the OpenEnv repository root
docker build -t openenv-base:latest -f src/core/containers/images/Dockerfile .
```
### Build the BrowserGym Environment
```bash
# From the OpenEnv repository root
docker build -t browsergym-env:latest -f src/envs/browsergym_env/server/Dockerfile .
```
### Run the Server
#### For MiniWoB (Training):
```bash
docker run -p 8000:8000 \
-e BROWSERGYM_BENCHMARK="miniwob" \
-e BROWSERGYM_TASK_NAME="click-test" \
browsergym-env:latest
```
#### For WebArena (Evaluation):
```bash
docker run -p 8000:8000 \
-e BROWSERGYM_BENCHMARK="webarena" \
-e BROWSERGYM_TASK_NAME="0" \
-e SHOPPING="http://your-server:7770" \
-e SHOPPING_ADMIN="http://your-server:7780/admin" \
-e REDDIT="http://your-server:9999" \
-e GITLAB="http://your-server:8023" \
-e MAP="http://your-server:3000" \
-e WIKIPEDIA="http://your-server:8888/wikipedia_en_all_maxi_2022-05/A/User:The_other_Kiwix_guy/Landing" \
-e HOMEPAGE="http://your-server:4399" \
browsergym-env:latest
```
## Environment Details
### Action
Actions in BrowserGym are natural language strings that describe browser operations:
```python
from envs.browsergym_env import BrowserGymAction
# Click actions
action = BrowserGymAction(action_str="click('Submit button')")
action = BrowserGymAction(action_str="click('element_id_123')")
# Type actions
action = BrowserGymAction(action_str="fill('username', 'john@example.com')")
action = BrowserGymAction(action_str="fill('password', 'secret123')")
# Navigate actions
action = BrowserGymAction(action_str="goto('https://example.com')")
# Keyboard actions
action = BrowserGymAction(action_str="press('Enter')")
action = BrowserGymAction(action_str="press('Tab')")
# Scroll actions
action = BrowserGymAction(action_str="scroll('down')")
```
### Observation
Observations contain multiple modalities:
```python
result = env.step(action)
obs = result.observation
# Text observations
print(obs.text) # Primary text representation (AXTree or DOM)
print(obs.axtree_txt) # Accessibility tree
print(obs.pruned_html) # Pruned HTML (interactive elements only)
# Page metadata
print(obs.url) # Current URL
print(obs.goal) # Task goal/instruction
# Visual (if enabled)
if obs.screenshot is not None:
print(obs.screenshot.shape) # [height, width, channels]
# Error handling
if obs.last_action_error:
print(f"Action failed: {obs.error}")
# Episode status
print(obs.done) # True if episode ended
print(obs.reward) # Reward for the step
# Access full BrowserGym data (includes timestamps, etc.)
print(obs.metadata["browsergym_obs"]) # Full observation dict from BrowserGym
print(obs.metadata["browsergym_info"]) # Full info dict (timestamps, page state, etc.)
```
#### Advanced: Accessing Raw BrowserGym Data
For VisualWebArena or custom training, you may need additional data like timestamps or browser state. The full BrowserGym observation and info dicts are preserved in `metadata`:
```python
result = env.step(action)
# Access timestamps (if available)
info = result.observation.metadata["browsergym_info"]
if "timestamp" in info:
print(f"Action timestamp: {info['timestamp']}")
# Access additional observation fields
obs_dict = result.observation.metadata["browsergym_obs"]
if "dom_object" in obs_dict:
dom = obs_dict["dom_object"]
# Work with raw DOM object
# Access page performance data
if "performance" in info:
print(f"Page load time: {info['performance']}")
```
### State
The environment state tracks progress:
```python
state = env.state()
print(f"Benchmark: {state.benchmark}") # 'miniwob', 'webarena', etc.
print(f"Task: {state.task_name}") # Task name/ID
print(f"Episode: {state.episode_id}") # Unique episode ID
print(f"Steps: {state.step_count}") # Number of steps taken
print(f"Total Reward: {state.cum_reward}") # Cumulative reward
print(f"Goal: {state.goal}") # Task instruction
print(f"URL: {state.current_url}") # Current page URL
```
## Configuration
Environment variables:
### Common Settings
- `BROWSERGYM_BENCHMARK`: Benchmark to use (`miniwob`, `webarena`, `visualwebarena`, `workarena`)
- `BROWSERGYM_TASK_NAME`: Specific task name (optional, will use first available if not set)
- `BROWSERGYM_HEADLESS`: Run browser in headless mode (default: `true`)
- `BROWSERGYM_VIEWPORT_WIDTH`: Browser viewport width (default: `1280`)
- `BROWSERGYM_VIEWPORT_HEIGHT`: Browser viewport height (default: `720`)
- `BROWSERGYM_TIMEOUT`: Action timeout in milliseconds (default: `10000`)
### WebArena-Specific (only needed for WebArena benchmark)
- `SHOPPING`: Shopping website URL
- `SHOPPING_ADMIN`: Shopping admin panel URL
- `REDDIT`: Reddit-like forum URL
- `GITLAB`: GitLab instance URL
- `MAP`: Map service URL
- `WIKIPEDIA`: Wikipedia instance URL
- `HOMEPAGE`: Homepage URL
## Supported Benchmarks
### 1. MiniWoB++ (Training) β
Recommended for Training
- **100+ tasks** ranging from simple (click buttons) to complex (form filling, navigation)
- **Fast**: Instant resets, quick episodes
- **Randomized**: Task variations for generalization
- **No setup**: Works out-of-the-box
- **Dense rewards**: Immediate feedback for learning
**Use Case**: Train agents on fundamental web navigation skills
### 2. WebArena (Evaluation) π Benchmark
- **812 realistic tasks** across 6 websites
- **Complex**: Multi-step reasoning, real web interfaces
- **Requires setup**: Need to run 7 backend services
- **Sparse rewards**: Binary success/failure
- **Evaluation-focused**: Test real-world performance
**Use Case**: Evaluate agents on realistic web tasks
### 3. VisualWebArena (Evaluation) ποΈ Visual Benchmark
- **910 tasks** requiring visual understanding
- **Multimodal**: Both text and visual observations
- **Requires setup**: Similar to WebArena
- **Challenging**: Requires visual reasoning
**Use Case**: Test visual web navigation capabilities
### 4. WorkArena (Evaluation) πΌ Enterprise Benchmark
- **Enterprise tasks**: CRM, project management, etc.
- **Realistic workflows**: Real enterprise software
- **Requires setup**: Enterprise software instances
**Use Case**: Evaluate on business automation tasks
## Typical Training Pipeline
```python
from envs.browsergym_env import BrowserGymEnv, BrowserGymAction
# Stage 1: Train on MiniWoB (simple tasks, fast)
train_env = BrowserGymEnv.from_docker_image(
"browsergym-env:latest",
environment={
"BROWSERGYM_BENCHMARK": "miniwob",
"BROWSERGYM_TASK_NAME": "click-button",
}
)
# Train your agent (RL, imitation learning, etc.)
agent.train(train_env, num_episodes=10000)
train_env.close()
# Stage 2: Evaluate on WebArena (complex tasks, realistic)
eval_env = BrowserGymEnv.from_docker_image(
"browsergym-env:latest",
environment={
"BROWSERGYM_BENCHMARK": "webarena",
"BROWSERGYM_TASK_NAME": "0",
# ... WebArena URLs
}
)
# Test performance
success_rate = agent.evaluate(eval_env, num_tasks=812)
print(f"WebArena Success Rate: {success_rate:.2%}")
eval_env.close()
```
## Development & Testing
### Running Tests
```bash
# From the OpenEnv repository root
pytest tests/envs/test_browsergym_env.py
```
### Local Development
```bash
# Install in development mode
cd /path/to/OpenEnv
pip install -e .
# Install BrowserGym
pip install browsergym browsergym-miniwob browsergym-webarena
# Run the server locally
cd src/envs/browsergym_env/server
export BROWSERGYM_BENCHMARK=miniwob
export BROWSERGYM_TASK_NAME=click-test
python app.py
```
## Project Structure
```
browsergym_env/
βββ __init__.py # Module exports
βββ models.py # Action, Observation, State dataclasses
βββ client.py # HTTPEnvClient implementation
βββ README.md # This file
βββ server/
βββ __init__.py
βββ app.py # FastAPI application
βββ browsergym_environment.py # Environment implementation
βββ Dockerfile # Container specification
βββ requirements.txt # Python dependencies
```
## References
- [BrowserGym GitHub](https://github.com/ServiceNow/BrowserGym)
- [MiniWoB++ Paper](https://arxiv.org/abs/1802.08802)
- [WebArena Paper](https://arxiv.org/abs/2307.13854)
- [WebArena Website](https://webarena.dev/)
- [VisualWebArena Paper](https://jykoh.com/vwa)
- [OpenEnv Documentation](https://github.com/openenv/openenv) |