Spaces:
Running
Running
Upload app.py with huggingface_hub
Browse files
app.py
ADDED
|
@@ -0,0 +1,339 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#!/usr/bin/env python3
|
| 2 |
+
"""
|
| 3 |
+
Play any Atari game using a Vision-Language Model via the Hugging Face Router API.
|
| 4 |
+
|
| 5 |
+
The script:
|
| 6 |
+
1. Starts an Atari environment (Docker) for the selected game
|
| 7 |
+
2. Sends recent screen frames to a vision-language model
|
| 8 |
+
3. Parses the model's integer response into an Atari action id
|
| 9 |
+
4. Reports a minimal summary
|
| 10 |
+
|
| 11 |
+
Notes:
|
| 12 |
+
- Frames are sent raw (no overlays, cropping, or resizing)
|
| 13 |
+
- The model receives the legal action ids each step and must return one integer
|
| 14 |
+
|
| 15 |
+
Usage:
|
| 16 |
+
export API_KEY=your_hf_token_here
|
| 17 |
+
python examples/atari_pong_inference.py --game breakout --model Qwen/Qwen3-VL-8B-Instruct:novita
|
| 18 |
+
"""
|
| 19 |
+
|
| 20 |
+
import os
|
| 21 |
+
import re
|
| 22 |
+
import base64
|
| 23 |
+
import gradio as gr
|
| 24 |
+
from collections import deque
|
| 25 |
+
from io import BytesIO
|
| 26 |
+
from typing import Deque, List, Optional
|
| 27 |
+
|
| 28 |
+
import numpy as np
|
| 29 |
+
from PIL import Image
|
| 30 |
+
from openai import OpenAI
|
| 31 |
+
|
| 32 |
+
from envs.atari_env import AtariEnv, AtariAction
|
| 33 |
+
|
| 34 |
+
|
| 35 |
+
# API Configuration
|
| 36 |
+
# For HuggingFace: Use HF_TOKEN and set API_BASE_URL
|
| 37 |
+
API_BASE_URL = "https://router.huggingface.co/v1" # Hugging Face Router endpoint
|
| 38 |
+
API_KEY = os.getenv("API_KEY") # Required for Hugging Face
|
| 39 |
+
ATARI_ENV_BASE_URL = os.getenv("ATARI_ENV_BASE_URL") # Optional: connect to a remote Atari env
|
| 40 |
+
|
| 41 |
+
# Vision-Language Model (Hugging Face Router compatible)
|
| 42 |
+
MODEL = "Qwen/Qwen3-VL-8B-Instruct:novita"
|
| 43 |
+
|
| 44 |
+
# Configuration
|
| 45 |
+
TEMPERATURE = 0.7
|
| 46 |
+
MAX_STEPS_PER_GAME = 10000
|
| 47 |
+
MAX_TOKENS = 16
|
| 48 |
+
VERBOSE = True
|
| 49 |
+
FRAME_HISTORY_LENGTH = 4
|
| 50 |
+
DISPLAY_SCALE = 3 # Scale factor for enlarging frames sent to UI
|
| 51 |
+
MODEL_SCALE = 3 # Scale factor for enlarging frames sent to the model
|
| 52 |
+
|
| 53 |
+
# Generic game prompt for the vision model
|
| 54 |
+
VISION_PROMPT = (
|
| 55 |
+
"You are playing an Atari-style game. You will be given recent frames "
|
| 56 |
+
"and the list of legal action ids for the current step. "
|
| 57 |
+
"Respond with a single integer that is exactly one of the legal action ids. "
|
| 58 |
+
"Do not include any words or punctuation — only the integer."
|
| 59 |
+
)
|
| 60 |
+
|
| 61 |
+
ACTIONS_LOOKUP = {
|
| 62 |
+
0: "NOOP",
|
| 63 |
+
1: "FIRE",
|
| 64 |
+
2: "UP",
|
| 65 |
+
3: "RIGHT",
|
| 66 |
+
4: "LEFT",
|
| 67 |
+
5: "DOWN",
|
| 68 |
+
6: "UPRIGHT",
|
| 69 |
+
7: "UPLEFT",
|
| 70 |
+
8: "DOWNRIGHT",
|
| 71 |
+
9: "DOWNLEFT",
|
| 72 |
+
10: "UPFIRE",
|
| 73 |
+
11: "RIGHTFIRE",
|
| 74 |
+
12: "LEFTFIRE",
|
| 75 |
+
13: "DOWNFIRE",
|
| 76 |
+
14: "UPRIGHTFIRE",
|
| 77 |
+
15: "UPLEFTFIRE",
|
| 78 |
+
16: "DOWNRIGHTFIRE",
|
| 79 |
+
17: "DOWNLEFTFIRE",
|
| 80 |
+
}
|
| 81 |
+
|
| 82 |
+
def screen_to_base64(screen: List[int], screen_shape: List[int]) -> str:
|
| 83 |
+
"""Convert flattened screen array to base64 encoded PNG image (no processing)."""
|
| 84 |
+
screen_array = np.array(screen, dtype=np.uint8).reshape(screen_shape)
|
| 85 |
+
image = Image.fromarray(screen_array)
|
| 86 |
+
# Enlarge image for model input if configured
|
| 87 |
+
try:
|
| 88 |
+
if MODEL_SCALE and MODEL_SCALE > 1:
|
| 89 |
+
image = image.resize((image.width * MODEL_SCALE, image.height * MODEL_SCALE), Image.NEAREST)
|
| 90 |
+
except Exception:
|
| 91 |
+
pass
|
| 92 |
+
buffer = BytesIO()
|
| 93 |
+
image.save(buffer, format='PNG')
|
| 94 |
+
buffer.seek(0)
|
| 95 |
+
return base64.b64encode(buffer.read()).decode('utf-8')
|
| 96 |
+
|
| 97 |
+
|
| 98 |
+
def screen_to_numpy(screen: List[int], screen_shape: List[int]) -> np.ndarray:
|
| 99 |
+
"""Convert flattened screen to a larger RGB numpy array for gr.Image display."""
|
| 100 |
+
arr = np.array(screen, dtype=np.uint8).reshape(screen_shape)
|
| 101 |
+
if len(screen_shape) == 3:
|
| 102 |
+
img = Image.fromarray(arr, mode='RGB')
|
| 103 |
+
else:
|
| 104 |
+
img = Image.fromarray(arr, mode='L')
|
| 105 |
+
# Enlarge with nearest-neighbor to preserve pixel edges
|
| 106 |
+
try:
|
| 107 |
+
img = img.resize((img.width * DISPLAY_SCALE, img.height * DISPLAY_SCALE), Image.NEAREST)
|
| 108 |
+
except Exception:
|
| 109 |
+
pass
|
| 110 |
+
if img.mode != 'RGB':
|
| 111 |
+
img = img.convert('RGB')
|
| 112 |
+
return np.array(img)
|
| 113 |
+
|
| 114 |
+
|
| 115 |
+
def content_text(text: str) -> dict:
|
| 116 |
+
return {"type": "text", "text": text}
|
| 117 |
+
|
| 118 |
+
|
| 119 |
+
def content_image_b64(b64_png: str) -> dict:
|
| 120 |
+
return {"type": "image_url", "image_url": {"url": f"data:image/png;base64,{b64_png}"}}
|
| 121 |
+
|
| 122 |
+
|
| 123 |
+
def build_messages(prompt: str, frame_history_b64: Deque[str], current_b64: str, legal_actions: List[int]) -> List[dict]:
|
| 124 |
+
messages: List[dict] = [
|
| 125 |
+
{"role": "system", "content": [content_text(prompt)]}
|
| 126 |
+
]
|
| 127 |
+
if len(frame_history_b64) > 1:
|
| 128 |
+
total = len(frame_history_b64)
|
| 129 |
+
messages.extend([
|
| 130 |
+
{
|
| 131 |
+
"role": "user",
|
| 132 |
+
"content": [
|
| 133 |
+
content_text(f"Frame -{total - idx}"),
|
| 134 |
+
content_image_b64(_img),
|
| 135 |
+
],
|
| 136 |
+
}
|
| 137 |
+
for idx, _img in enumerate(list(frame_history_b64)[:-1])
|
| 138 |
+
])
|
| 139 |
+
messages.append({
|
| 140 |
+
"role": "user",
|
| 141 |
+
"content": [content_text("Current frame:"), content_image_b64(current_b64)],
|
| 142 |
+
})
|
| 143 |
+
# Include mapping of action ids to human-readable names for the model
|
| 144 |
+
action_pairs = ", ".join([f"{aid}:{ACTIONS_LOOKUP.get(aid, 'UNK')}" for aid in legal_actions])
|
| 145 |
+
messages.append({
|
| 146 |
+
"role": "user",
|
| 147 |
+
"content": [content_text(f"Legal actions (id:name): {action_pairs}. Respond with exactly one INTEGER id.")],
|
| 148 |
+
})
|
| 149 |
+
return messages
|
| 150 |
+
|
| 151 |
+
|
| 152 |
+
class GameSession:
|
| 153 |
+
"""Holds environment/model state and advances one step per tick."""
|
| 154 |
+
def __init__(self, game: str, model_name: str, prompt_text: str):
|
| 155 |
+
if not API_KEY:
|
| 156 |
+
raise RuntimeError("Missing API_KEY for HF Router")
|
| 157 |
+
self.client = OpenAI(base_url=API_BASE_URL, api_key=API_KEY)
|
| 158 |
+
self.env: Optional[AtariEnv] = None
|
| 159 |
+
self.model_name = model_name
|
| 160 |
+
self.game = game
|
| 161 |
+
self.prompt = (prompt_text or "").strip() or VISION_PROMPT
|
| 162 |
+
self.frame_history_base64: Deque[str] = deque(maxlen=FRAME_HISTORY_LENGTH)
|
| 163 |
+
self.total_reward = 0.0
|
| 164 |
+
self.steps = 0
|
| 165 |
+
self.done = False
|
| 166 |
+
|
| 167 |
+
# Start environment
|
| 168 |
+
self.env = AtariEnv(base_url=f"https://burtenshaw-{game}.hf.space")
|
| 169 |
+
result = self.env.reset()
|
| 170 |
+
self.obs = result.observation
|
| 171 |
+
self.log_message = f"Game: {self.game} started"
|
| 172 |
+
|
| 173 |
+
def close(self):
|
| 174 |
+
if self.env is not None:
|
| 175 |
+
try:
|
| 176 |
+
self.env.close()
|
| 177 |
+
finally:
|
| 178 |
+
self.env = None
|
| 179 |
+
self.done = True
|
| 180 |
+
|
| 181 |
+
def next_frame(self) -> Optional[np.ndarray]:
|
| 182 |
+
# Snapshot env reference to avoid race if another thread closes it mid-tick
|
| 183 |
+
env = self.env
|
| 184 |
+
if self.done or env is None:
|
| 185 |
+
return None
|
| 186 |
+
if self.steps >= MAX_STEPS_PER_GAME:
|
| 187 |
+
self.close()
|
| 188 |
+
return None
|
| 189 |
+
|
| 190 |
+
# Prepare images
|
| 191 |
+
image_data = screen_to_base64(self.obs.screen, self.obs.screen_shape)
|
| 192 |
+
if FRAME_HISTORY_LENGTH > 0:
|
| 193 |
+
self.frame_history_base64.append(image_data)
|
| 194 |
+
|
| 195 |
+
# Build messages (deduplicated helpers)
|
| 196 |
+
messages = build_messages(self.prompt, self.frame_history_base64, image_data, self.obs.legal_actions)
|
| 197 |
+
|
| 198 |
+
# Query model
|
| 199 |
+
try:
|
| 200 |
+
completion = self.client.chat.completions.create(
|
| 201 |
+
model=self.model_name,
|
| 202 |
+
messages=messages,
|
| 203 |
+
temperature=TEMPERATURE,
|
| 204 |
+
max_tokens=MAX_TOKENS,
|
| 205 |
+
)
|
| 206 |
+
response_text = completion.choices[0].message.content or ""
|
| 207 |
+
action_id = parse_action(response_text, self.obs.legal_actions)
|
| 208 |
+
except Exception:
|
| 209 |
+
action_id = 0 if 0 in self.obs.legal_actions else self.obs.legal_actions[0]
|
| 210 |
+
|
| 211 |
+
# Step env (guard against races with stop/close)
|
| 212 |
+
try:
|
| 213 |
+
result = env.step(AtariAction(action_id=action_id))
|
| 214 |
+
except AttributeError:
|
| 215 |
+
# env likely closed concurrently
|
| 216 |
+
self.close()
|
| 217 |
+
return None
|
| 218 |
+
except Exception:
|
| 219 |
+
# Network/server error - stop session gracefully
|
| 220 |
+
self.close()
|
| 221 |
+
return None
|
| 222 |
+
self.obs = result.observation
|
| 223 |
+
self.total_reward += result.reward or 0.0
|
| 224 |
+
self.steps += 1
|
| 225 |
+
if result.done:
|
| 226 |
+
self.done = True
|
| 227 |
+
self.close()
|
| 228 |
+
|
| 229 |
+
action_name = ACTIONS_LOOKUP.get(action_id, str(action_id))
|
| 230 |
+
self.log_message += f"\nAction: {action_name} ({action_id}) Reward: {result.reward}"
|
| 231 |
+
return screen_to_numpy(self.obs.screen, self.obs.screen_shape)
|
| 232 |
+
|
| 233 |
+
|
| 234 |
+
def parse_action(text: str, legal_actions: List[int]) -> int:
|
| 235 |
+
"""
|
| 236 |
+
Parse action from model output.
|
| 237 |
+
Handles chain-of-thought format by taking the LAST valid number found.
|
| 238 |
+
|
| 239 |
+
Args:
|
| 240 |
+
text: Model's text response (may include reasoning)
|
| 241 |
+
legal_actions: List of valid action IDs
|
| 242 |
+
|
| 243 |
+
Returns:
|
| 244 |
+
Selected action ID (defaults to NOOP if parsing fails)
|
| 245 |
+
"""
|
| 246 |
+
# Look for single digit numbers in the response
|
| 247 |
+
numbers = re.findall(r'\b\d+\b', text)
|
| 248 |
+
|
| 249 |
+
# Check from the end (last number is likely the final action after reasoning)
|
| 250 |
+
for num_str in reversed(numbers):
|
| 251 |
+
action_id = int(num_str)
|
| 252 |
+
if action_id in legal_actions:
|
| 253 |
+
return action_id
|
| 254 |
+
|
| 255 |
+
# Default to NOOP if available, otherwise first legal action
|
| 256 |
+
return 0 if 0 in legal_actions else legal_actions[0]
|
| 257 |
+
|
| 258 |
+
|
| 259 |
+
# Legacy CLI loop removed; Gradio's Image.every drives stepping via GameSession.next_frame
|
| 260 |
+
|
| 261 |
+
|
| 262 |
+
def start_session(game: str, model_name: str, prompt_text: str) -> Optional[GameSession]:
|
| 263 |
+
try:
|
| 264 |
+
return GameSession(game=game, model_name=model_name, prompt_text=prompt_text)
|
| 265 |
+
except Exception as e:
|
| 266 |
+
raise gr.Error(str(e))
|
| 267 |
+
|
| 268 |
+
|
| 269 |
+
def stop_session(session: Optional[GameSession]) -> Optional[GameSession]:
|
| 270 |
+
if isinstance(session, GameSession):
|
| 271 |
+
session.close()
|
| 272 |
+
return None
|
| 273 |
+
|
| 274 |
+
|
| 275 |
+
def frame_tick(session: Optional[GameSession]) -> Optional[np.ndarray]:
|
| 276 |
+
if not isinstance(session, GameSession):
|
| 277 |
+
return None
|
| 278 |
+
frame = session.next_frame()
|
| 279 |
+
if frame is None:
|
| 280 |
+
# Auto-stop when done
|
| 281 |
+
session.close()
|
| 282 |
+
return None
|
| 283 |
+
return frame
|
| 284 |
+
|
| 285 |
+
|
| 286 |
+
def log_tick(session: Optional[GameSession]) -> str:
|
| 287 |
+
if not isinstance(session, GameSession):
|
| 288 |
+
return ""
|
| 289 |
+
return session.log_message
|
| 290 |
+
|
| 291 |
+
|
| 292 |
+
def launch_gradio_app():
|
| 293 |
+
games = [
|
| 294 |
+
"pong",
|
| 295 |
+
"breakout",
|
| 296 |
+
"pacman",
|
| 297 |
+
]
|
| 298 |
+
models = [
|
| 299 |
+
"Qwen/Qwen3-VL-8B-Instruct",
|
| 300 |
+
"Qwen/Qwen3-VL-72B-A14B-Instruct",
|
| 301 |
+
"Qwen/Qwen3-VL-235B-A22B-Instruct",
|
| 302 |
+
]
|
| 303 |
+
|
| 304 |
+
with gr.Blocks() as demo:
|
| 305 |
+
gr.Markdown("""
|
| 306 |
+
### Atari Vision-Language Control
|
| 307 |
+
- Select a game and model, edit the prompt, then click Start.
|
| 308 |
+
- Frames are streamed directly from the environment without modification.
|
| 309 |
+
- There are a limited number of environment spaces via `"https://burtenshaw-{game}.hf.space"`
|
| 310 |
+
- Duplicate the space and change environment variables if you want to use a different game.
|
| 311 |
+
""")
|
| 312 |
+
|
| 313 |
+
|
| 314 |
+
session_state = gr.State()
|
| 315 |
+
|
| 316 |
+
with gr.Row():
|
| 317 |
+
|
| 318 |
+
with gr.Column():
|
| 319 |
+
game_dd = gr.Dropdown(choices=games, value="pong", label="Game")
|
| 320 |
+
model_dd = gr.Dropdown(choices=models, value=models[0], label="Model")
|
| 321 |
+
prompt_tb = gr.Textbox(label="Prompt", value=VISION_PROMPT, lines=6)
|
| 322 |
+
with gr.Row():
|
| 323 |
+
start_btn = gr.Button("Start", variant="primary")
|
| 324 |
+
stop_btn = gr.Button("Stop")
|
| 325 |
+
|
| 326 |
+
with gr.Column():
|
| 327 |
+
out_image = gr.Image(label="Game Stream", type="numpy", value=frame_tick, inputs=[session_state], every=0.1, height=480, width=640)
|
| 328 |
+
|
| 329 |
+
out_text = gr.Textbox(label="Game Logs", value=log_tick, inputs=[session_state], lines=10, every=0.5)
|
| 330 |
+
|
| 331 |
+
# Controls
|
| 332 |
+
start_btn.click(start_session, inputs=[game_dd, model_dd, prompt_tb], outputs=[session_state])
|
| 333 |
+
stop_btn.click(stop_session, inputs=[session_state], outputs=[session_state])
|
| 334 |
+
|
| 335 |
+
demo.queue()
|
| 336 |
+
demo.launch()
|
| 337 |
+
|
| 338 |
+
if __name__ == "__main__":
|
| 339 |
+
launch_gradio_app()
|