File size: 10,514 Bytes
2148c1c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330

import gradio as gr
from app import demo as app
import os

_docs = {'WordleBoard': {'description': 'Interactive Wordle board component.', 'members': {'__init__': {'word_length': {'type': 'int', 'default': '5', 'description': None}, 'max_attempts': {'type': 'int', 'default': '6', 'description': None}, 'return': {'type': 'None', 'description': None}}, 'postprocess': {'value': {'type': 'typing.Union[\n    gradio_wordleboard.wordleboard.PublicWordleState,\n    typing.Dict,\n    str,\n    NoneType,\n][PublicWordleState, Dict, str, None]', 'description': None}}, 'preprocess': {'return': {'type': 'typing.Optional[typing.Dict][Dict, None]', 'description': "The preprocessed input data sent to the user's function in the backend."}, 'value': None}}, 'events': {}}, '__meta__': {'additional_interfaces': {'PublicWordleState': {'source': '@dataclass\nclass PublicWordleState:\n    board: List[WordleRow]\n    current_row: int\n    status: str\n    message: str\n    max_rows: int', 'refs': ['WordleRow']}, 'WordleRow': {'source': '@dataclass\nclass WordleRow:\n    letters: List[str] = field(\n        default_factory=lambda: [""] * 5\n    )\n    statuses: List[TileStatus] = field(\n        default_factory=lambda: ["empty"] * 5\n    )'}}, 'user_fn_refs': {'WordleBoard': ['PublicWordleState']}}}

abs_path = os.path.join(os.path.dirname(__file__), "css.css")

with gr.Blocks(
    css=abs_path,
    theme=gr.themes.Default(
        font_mono=[
            gr.themes.GoogleFont("Inconsolata"),
            "monospace",
        ],
    ),
) as demo:
    gr.Markdown(
"""
# `gradio_wordleboard`

<div style="display: flex; gap: 7px;">
<img alt="Static Badge" src="https://img.shields.io/badge/version%20-%200.0.1%20-%20orange">  
</div>

A custom Gradio component that renders and plays the Wordle word game
""", elem_classes=["md-custom"], header_links=True)
    app.render()
    gr.Markdown(
"""
## Installation

```bash
pip install gradio_wordleboard
```

## Usage

```python

from __future__ import annotations

import asyncio
import os
import re
from typing import AsyncIterator, Dict, List

import gradio as gr
from gradio_wordleboard import WordleBoard
from openai import AsyncOpenAI

from envs.textarena_env import TextArenaAction, TextArenaEnv
from envs.textarena_env.models import TextArenaMessage


API_BASE_URL = os.getenv("API_BASE_URL", "https://router.huggingface.co/v1")
API_KEY = os.getenv("API_KEY") or os.getenv("HF_TOKEN")
MODEL = os.getenv("MODEL", "openai/gpt-oss-120b:novita")
MAX_TURNS = int(os.getenv("MAX_TURNS", "6"))
DOCKER_IMAGE = os.getenv("TEXTARENA_IMAGE", "textarena-env:latest")


def _format_history(messages: List[TextArenaMessage]) -> str:
    lines: List[str] = []
    for message in messages:
        tag = message.category or "MESSAGE"
        lines.append(f"[{tag}] {message.content}")
    return "\n".join(lines)


def _make_user_prompt(prompt_text: str, messages: List[TextArenaMessage]) -> str:
    history = _format_history(messages)
    return (
        f"Current prompt:\n{prompt_text}\n\n"
        f"Conversation so far:\n{history}\n\n"
        "Reply with your next guess enclosed in square brackets."
    )


async def _generate_guesses(client: AsyncOpenAI, prompt: str, history: List[TextArenaMessage]) -> str:
    response = await client.chat.completions.create(
        model=MODEL,
        messages=[
            {
                "role": "system",
                "content": (
                    "You are an expert Wordle solver."
                    " Always respond with a single guess inside square brackets, e.g. [crane]."
                    " Use lowercase letters, exactly one five-letter word per reply."
                    " Reason about prior feedback before choosing the next guess."
                    " Words must be 5 letters long and real English words."
                    " Do not include any other text in your response."
                    " Do not repeat the same guess twice."
                ),
            },
            {"role": "user", "content": _make_user_prompt(prompt, history)},
        ],
        max_tokens=64,
        temperature=0.7,
    )

    content = response.choices[0].message.content
    response_text = content.strip() if content else ""
    print(f"Response text: {response_text}")
    return response_text


async def _play_wordle(env: TextArenaEnv, client: AsyncOpenAI) -> AsyncIterator[Dict[str, str]]:
    state = await asyncio.to_thread(env.reset)
    observation = state.observation

    for turn in range(1, MAX_TURNS + 1):
        if state.done:
            break

        model_output = await _generate_guesses(client, observation.prompt, observation.messages)
        guess = _extract_guess(model_output)

        state = await asyncio.to_thread(env.step, TextArenaAction(message=guess))
        observation = state.observation

        feedback = _collect_feedback(observation.messages)
        yield {"guess": guess, "feedback": feedback}

    yield {
        "guess": "",
        "feedback": _collect_feedback(observation.messages),
    }


def _extract_guess(text: str) -> str:
    if not text:
        return "[crane]"

    match = re.search(r"\[([A-Za-z]{5})\]", text)
    if match:
        guess = match.group(1).lower()
        return f"[{guess}]"

    cleaned = re.sub(r"[^a-zA-Z]", "", text).lower()
    if len(cleaned) >= 5:
        return f"[{cleaned[:5]}]"

    return "[crane]"


def _collect_feedback(messages: List[TextArenaMessage]) -> str:
    parts: List[str] = []
    for message in messages:
        tag = message.category or "MESSAGE"
        if tag.upper() in {"FEEDBACK", "SYSTEM", "MESSAGE"}:
            parts.append(message.content.strip())
    return "\n".join(parts).strip()


async def inference_handler(api_key: str) -> AsyncIterator[str]:
    if not api_key:
        raise RuntimeError("HF_TOKEN or API_KEY environment variable must be set.")

    client = AsyncOpenAI(base_url=API_BASE_URL, api_key=api_key)
    env = TextArenaEnv.from_docker_image(
        DOCKER_IMAGE,
        env_vars={
            "TEXTARENA_ENV_ID": "Wordle-v0",
            "TEXTARENA_NUM_PLAYERS": "1",
        },
        ports={8000: 8000},
    )

    try:
        async for result in _play_wordle(env, client):
            yield result["feedback"]
    finally:
        env.close()


wordle_component = WordleBoard()


async def run_inference() -> AsyncIterator[Dict]:
    feedback_history: List[str] = []

    async for feedback in inference_handler(API_KEY):
        stripped = feedback.strip()
        if not stripped:
            continue

        feedback_history.append(stripped)
        combined_feedback = "\n\n".join(feedback_history)
        state = wordle_component.parse_feedback(combined_feedback)
        yield wordle_component.to_public_dict(state)

    if not feedback_history:
        yield wordle_component.to_public_dict(wordle_component.create_game_state())


with gr.Blocks() as demo:
    gr.Markdown("# Wordle TextArena Inference Demo")

    board = WordleBoard(value=wordle_component.to_public_dict(wordle_component.create_game_state()))
    run_button = gr.Button("Run Inference", variant="primary")

    run_button.click(
        fn=run_inference,
        inputs=None,
        outputs=board,
        show_progress=True,
        api_name="run",
    )

demo.queue()


if __name__ == "__main__":
    if not API_KEY:
        raise SystemExit("HF_TOKEN (or API_KEY) must be set to query the model.")

    demo.launch()

```
""", elem_classes=["md-custom"], header_links=True)


    gr.Markdown("""
## `WordleBoard`

### Initialization
""", elem_classes=["md-custom"], header_links=True)

    gr.ParamViewer(value=_docs["WordleBoard"]["members"]["__init__"], linkify=['PublicWordleState', 'WordleRow'])




    gr.Markdown("""

### User function

The impact on the users predict function varies depending on whether the component is used as an input or output for an event (or both).

- When used as an Input, the component only impacts the input signature of the user function.
- When used as an output, the component only impacts the return signature of the user function.

The code snippet below is accurate in cases where the component is used as both an input and an output.

- **As input:** Is passed, the preprocessed input data sent to the user's function in the backend.


 ```python
def predict(
    value: typing.Optional[typing.Dict][Dict, None]
) -> typing.Union[
    gradio_wordleboard.wordleboard.PublicWordleState,
    typing.Dict,
    str,
    NoneType,
][PublicWordleState, Dict, str, None]:
    return value
```
""", elem_classes=["md-custom", "WordleBoard-user-fn"], header_links=True)




    code_PublicWordleState = gr.Markdown("""
## `PublicWordleState`
```python
@dataclass
class PublicWordleState:
    board: List[WordleRow]
    current_row: int
    status: str
    message: str
    max_rows: int
```""", elem_classes=["md-custom", "PublicWordleState"], header_links=True)

    code_WordleRow = gr.Markdown("""
## `WordleRow`
```python
@dataclass
class WordleRow:
    letters: List[str] = field(
        default_factory=lambda: [""] * 5
    )
    statuses: List[TileStatus] = field(
        default_factory=lambda: ["empty"] * 5
    )
```""", elem_classes=["md-custom", "WordleRow"], header_links=True)

    demo.load(None, js=r"""function() {
    const refs = {
            PublicWordleState: ['WordleRow'], 
            WordleRow: [], };
    const user_fn_refs = {
          WordleBoard: ['PublicWordleState'], };
    requestAnimationFrame(() => {

        Object.entries(user_fn_refs).forEach(([key, refs]) => {
            if (refs.length > 0) {
                const el = document.querySelector(`.${key}-user-fn`);
                if (!el) return;
                refs.forEach(ref => {
                    el.innerHTML = el.innerHTML.replace(
                        new RegExp("\\b"+ref+"\\b", "g"),
                        `<a href="#h-${ref.toLowerCase()}">${ref}</a>`
                    );
                })
            }
        })

        Object.entries(refs).forEach(([key, refs]) => {
            if (refs.length > 0) {
                const el = document.querySelector(`.${key}`);
                if (!el) return;
                refs.forEach(ref => {
                    el.innerHTML = el.innerHTML.replace(
                        new RegExp("\\b"+ref+"\\b", "g"),
                        `<a href="#h-${ref.toLowerCase()}">${ref}</a>`
                    );
                })
            }
        })
    })
}

""")

demo.launch()