File size: 5,340 Bytes
2148c1c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9023a14
2148c1c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173

from __future__ import annotations

import asyncio
import os
import re
from typing import AsyncIterator, Dict, List

import gradio as gr
from gradio_wordleboard import WordleBoard
from openai import AsyncOpenAI

from envs.textarena_env import TextArenaAction, TextArenaEnv
from envs.textarena_env.models import TextArenaMessage


API_BASE_URL = os.getenv("API_BASE_URL", "https://router.huggingface.co/v1")
API_KEY = os.getenv("API_KEY") or os.getenv("HF_TOKEN")
MODEL = os.getenv("MODEL", "openai/gpt-oss-120b:novita")
MAX_TURNS = int(os.getenv("MAX_TURNS", "6"))
DOCKER_IMAGE = os.getenv("TEXTARENA_IMAGE", "textarena-env:latest")


def _format_history(messages: List[TextArenaMessage]) -> str:
    lines: List[str] = []
    for message in messages:
        tag = message.category or "MESSAGE"
        lines.append(f"[{tag}] {message.content}")
    return "\n".join(lines)


def _make_user_prompt(prompt_text: str, messages: List[TextArenaMessage]) -> str:
    history = _format_history(messages)
    return (
        f"Current prompt:\n{prompt_text}\n\n"
        f"Conversation so far:\n{history}\n\n"
        "Reply with your next guess enclosed in square brackets."
    )


async def _generate_guesses(client: AsyncOpenAI, prompt: str, history: List[TextArenaMessage]) -> str:
    response = await client.chat.completions.create(
        model=MODEL,
        messages=[
            {
                "role": "system",
                "content": (
                    "You are an expert Wordle solver."
                    " Always respond with a single guess inside square brackets, e.g. [crane]."
                    " Use lowercase letters, exactly one five-letter word per reply."
                    " Reason about prior feedback before choosing the next guess."
                    " Words must be 5 letters long and real English words."
                    " Do not include any other text in your response."
                    " Do not repeat the same guess twice."
                ),
            },
            {"role": "user", "content": _make_user_prompt(prompt, history)},
        ],
        max_tokens=64,
        temperature=0.7,
    )

    content = response.choices[0].message.content
    response_text = content.strip() if content else ""
    print(f"Response text: {response_text}")
    return response_text


async def _play_wordle(env: TextArenaEnv, client: AsyncOpenAI) -> AsyncIterator[Dict[str, str]]:
    state = await asyncio.to_thread(env.reset)
    observation = state.observation

    for turn in range(1, MAX_TURNS + 1):
        if state.done:
            break

        model_output = await _generate_guesses(client, observation.prompt, observation.messages)
        guess = _extract_guess(model_output)

        state = await asyncio.to_thread(env.step, TextArenaAction(message=guess))
        observation = state.observation

        feedback = _collect_feedback(observation.messages)
        yield {"guess": guess, "feedback": feedback}

    yield {
        "guess": "",
        "feedback": _collect_feedback(observation.messages),
    }


def _extract_guess(text: str) -> str:
    if not text:
        return "[crane]"

    match = re.search(r"\[([A-Za-z]{5})\]", text)
    if match:
        guess = match.group(1).lower()
        return f"[{guess}]"

    cleaned = re.sub(r"[^a-zA-Z]", "", text).lower()
    if len(cleaned) >= 5:
        return f"[{cleaned[:5]}]"

    return "[crane]"


def _collect_feedback(messages: List[TextArenaMessage]) -> str:
    parts: List[str] = []
    for message in messages:
        tag = message.category or "MESSAGE"
        if tag.upper() in {"FEEDBACK", "SYSTEM", "MESSAGE"}:
            parts.append(message.content.strip())
    return "\n".join(parts).strip()


async def inference_handler(api_key: str) -> AsyncIterator[str]:
    if not api_key:
        raise RuntimeError("HF_TOKEN or API_KEY environment variable must be set.")

    client = AsyncOpenAI(base_url=API_BASE_URL, api_key=api_key)
    env = TextArenaEnv(base_url="https://burtenshaw-textarena.hf.space")

    try:
        async for result in _play_wordle(env, client):
            yield result["feedback"]
    finally:
        env.close()


wordle_component = WordleBoard()


async def run_inference() -> AsyncIterator[Dict]:
    feedback_history: List[str] = []

    async for feedback in inference_handler(API_KEY):
        stripped = feedback.strip()
        if not stripped:
            continue

        feedback_history.append(stripped)
        combined_feedback = "\n\n".join(feedback_history)
        state = wordle_component.parse_feedback(combined_feedback)
        yield wordle_component.to_public_dict(state)

    if not feedback_history:
        yield wordle_component.to_public_dict(wordle_component.create_game_state())


with gr.Blocks() as demo:
    gr.Markdown("# Wordle TextArena Inference Demo")

    board = WordleBoard(value=wordle_component.to_public_dict(wordle_component.create_game_state()))
    run_button = gr.Button("Run Inference", variant="primary")

    run_button.click(
        fn=run_inference,
        inputs=None,
        outputs=board,
        show_progress=True,
        api_name="run",
    )

demo.queue()


if __name__ == "__main__":
    if not API_KEY:
        raise SystemExit("HF_TOKEN (or API_KEY) must be set to query the model.")

    demo.launch()