File size: 4,337 Bytes
5a0778e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
import unittest

import numpy as np
import torch
from transformers import AutoTokenizer, GemmaConfig, GemmaForCausalLM

from diffusers import (
    AutoencoderKL,
    FlowMatchEulerDiscreteScheduler,
    Lumina2Text2ImgPipeline,
    Lumina2Transformer2DModel,
)
from diffusers.utils.testing_utils import torch_device

from ..test_pipelines_common import PipelineTesterMixin


class Lumina2Text2ImgPipelinePipelineFastTests(unittest.TestCase, PipelineTesterMixin):
    pipeline_class = Lumina2Text2ImgPipeline
    params = frozenset(
        [
            "prompt",
            "height",
            "width",
            "guidance_scale",
            "negative_prompt",
            "prompt_embeds",
            "negative_prompt_embeds",
        ]
    )
    batch_params = frozenset(["prompt", "negative_prompt"])
    required_optional_params = frozenset(
        [
            "num_inference_steps",
            "generator",
            "latents",
            "return_dict",
            "callback_on_step_end",
            "callback_on_step_end_tensor_inputs",
        ]
    )

    supports_dduf = False
    test_xformers_attention = False
    test_layerwise_casting = True

    def get_dummy_components(self):
        torch.manual_seed(0)
        transformer = Lumina2Transformer2DModel(
            sample_size=4,
            patch_size=2,
            in_channels=4,
            hidden_size=8,
            num_layers=2,
            num_attention_heads=1,
            num_kv_heads=1,
            multiple_of=16,
            ffn_dim_multiplier=None,
            norm_eps=1e-5,
            scaling_factor=1.0,
            axes_dim_rope=[4, 2, 2],
            cap_feat_dim=8,
        )

        torch.manual_seed(0)
        vae = AutoencoderKL(
            sample_size=32,
            in_channels=3,
            out_channels=3,
            block_out_channels=(4,),
            layers_per_block=1,
            latent_channels=4,
            norm_num_groups=1,
            use_quant_conv=False,
            use_post_quant_conv=False,
            shift_factor=0.0609,
            scaling_factor=1.5035,
        )

        scheduler = FlowMatchEulerDiscreteScheduler()
        tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/dummy-gemma")

        torch.manual_seed(0)
        config = GemmaConfig(
            head_dim=2,
            hidden_size=8,
            intermediate_size=37,
            num_attention_heads=4,
            num_hidden_layers=2,
            num_key_value_heads=4,
        )
        text_encoder = GemmaForCausalLM(config)

        components = {
            "transformer": transformer.eval(),
            "vae": vae.eval(),
            "scheduler": scheduler,
            "text_encoder": text_encoder.eval(),
            "tokenizer": tokenizer,
        }
        return components

    def get_dummy_inputs(self, device, seed=0):
        if str(device).startswith("mps"):
            generator = torch.manual_seed(seed)
        else:
            generator = torch.Generator(device="cpu").manual_seed(seed)

        inputs = {
            "prompt": "A painting of a squirrel eating a burger",
            "generator": generator,
            "num_inference_steps": 2,
            "guidance_scale": 5.0,
            "height": 32,
            "width": 32,
            "output_type": "np",
        }
        return inputs

    def test_lumina_prompt_embeds(self):
        pipe = self.pipeline_class(**self.get_dummy_components()).to(torch_device)
        inputs = self.get_dummy_inputs(torch_device)

        output_with_prompt = pipe(**inputs).images[0]

        inputs = self.get_dummy_inputs(torch_device)
        prompt = inputs.pop("prompt")

        do_classifier_free_guidance = inputs["guidance_scale"] > 1
        (
            prompt_embeds,
            prompt_attention_mask,
            negative_prompt_embeds,
            negative_prompt_attention_mask,
        ) = pipe.encode_prompt(
            prompt,
            do_classifier_free_guidance=do_classifier_free_guidance,
            device=torch_device,
        )
        output_with_embeds = pipe(
            prompt_embeds=prompt_embeds,
            prompt_attention_mask=prompt_attention_mask,
            **inputs,
        ).images[0]

        max_diff = np.abs(output_with_prompt - output_with_embeds).max()
        assert max_diff < 1e-4