File size: 4,554 Bytes
5a0778e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
import gc
import unittest

import numpy as np
import torch
from transformers import AutoTokenizer

from diffusers import AutoencoderKL, FlowMatchEulerDiscreteScheduler, OmniGenPipeline, OmniGenTransformer2DModel
from diffusers.utils.testing_utils import (
    numpy_cosine_similarity_distance,
    require_torch_gpu,
    slow,
    torch_device,
)

from ..test_pipelines_common import PipelineTesterMixin


class OmniGenPipelineFastTests(unittest.TestCase, PipelineTesterMixin):
    pipeline_class = OmniGenPipeline
    params = frozenset(["prompt", "guidance_scale"])
    batch_params = frozenset(["prompt"])

    test_layerwise_casting = True

    def get_dummy_components(self):
        torch.manual_seed(0)

        transformer = OmniGenTransformer2DModel(
            hidden_size=16,
            num_attention_heads=4,
            num_key_value_heads=4,
            intermediate_size=32,
            num_layers=1,
            in_channels=4,
            time_step_dim=4,
            rope_scaling={"long_factor": list(range(1, 3)), "short_factor": list(range(1, 3))},
        )

        torch.manual_seed(0)
        vae = AutoencoderKL(
            sample_size=32,
            in_channels=3,
            out_channels=3,
            block_out_channels=(4, 4, 4, 4),
            layers_per_block=1,
            latent_channels=4,
            norm_num_groups=1,
            up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D"],
        )

        scheduler = FlowMatchEulerDiscreteScheduler(invert_sigmas=True, num_train_timesteps=1)
        tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/llama-tokenizer")

        components = {
            "transformer": transformer,
            "vae": vae,
            "scheduler": scheduler,
            "tokenizer": tokenizer,
        }
        return components

    def get_dummy_inputs(self, device, seed=0):
        if str(device).startswith("mps"):
            generator = torch.manual_seed(seed)
        else:
            generator = torch.Generator(device="cpu").manual_seed(seed)

        inputs = {
            "prompt": "A painting of a squirrel eating a burger",
            "generator": generator,
            "num_inference_steps": 1,
            "guidance_scale": 3.0,
            "output_type": "np",
            "height": 16,
            "width": 16,
        }
        return inputs

    def test_inference(self):
        pipe = self.pipeline_class(**self.get_dummy_components()).to(torch_device)

        inputs = self.get_dummy_inputs(torch_device)
        generated_image = pipe(**inputs).images[0]

        self.assertEqual(generated_image.shape, (16, 16, 3))


@slow
@require_torch_gpu
class OmniGenPipelineSlowTests(unittest.TestCase):
    pipeline_class = OmniGenPipeline
    repo_id = "shitao/OmniGen-v1-diffusers"

    def setUp(self):
        super().setUp()
        gc.collect()
        torch.cuda.empty_cache()

    def tearDown(self):
        super().tearDown()
        gc.collect()
        torch.cuda.empty_cache()

    def get_inputs(self, device, seed=0):
        if str(device).startswith("mps"):
            generator = torch.manual_seed(seed)
        else:
            generator = torch.Generator(device="cpu").manual_seed(seed)

        return {
            "prompt": "A photo of a cat",
            "num_inference_steps": 2,
            "guidance_scale": 2.5,
            "output_type": "np",
            "generator": generator,
        }

    def test_omnigen_inference(self):
        pipe = self.pipeline_class.from_pretrained(self.repo_id, torch_dtype=torch.bfloat16)
        pipe.enable_model_cpu_offload()

        inputs = self.get_inputs(torch_device)

        image = pipe(**inputs).images[0]
        image_slice = image[0, :10, :10]

        expected_slice = np.array(
            [
                [0.1783447, 0.16772744, 0.14339337],
                [0.17066911, 0.15521264, 0.13757327],
                [0.17072496, 0.15531206, 0.13524258],
                [0.16746324, 0.1564025, 0.13794944],
                [0.16490817, 0.15258026, 0.13697758],
                [0.16971767, 0.15826806, 0.13928896],
                [0.16782972, 0.15547255, 0.13783783],
                [0.16464645, 0.15281534, 0.13522372],
                [0.16535294, 0.15301755, 0.13526791],
                [0.16365296, 0.15092957, 0.13443318],
            ],
            dtype=np.float32,
        )

        max_diff = numpy_cosine_similarity_distance(expected_slice.flatten(), image_slice.flatten())

        assert max_diff < 1e-4