Spaces:
Running
on
Zero
Running
on
Zero
| # coding=utf-8 | |
| # Copyright 2024 HuggingFace Inc. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| import logging | |
| import os | |
| import sys | |
| import tempfile | |
| sys.path.append("..") | |
| from test_examples_utils import ExamplesTestsAccelerate, run_command # noqa: E402 | |
| logging.basicConfig(level=logging.DEBUG) | |
| logger = logging.getLogger() | |
| stream_handler = logging.StreamHandler(sys.stdout) | |
| logger.addHandler(stream_handler) | |
| class ControlNet(ExamplesTestsAccelerate): | |
| def test_controlnet_checkpointing_checkpoints_total_limit(self): | |
| with tempfile.TemporaryDirectory() as tmpdir: | |
| test_args = f""" | |
| examples/controlnet/train_controlnet.py | |
| --pretrained_model_name_or_path=hf-internal-testing/tiny-stable-diffusion-pipe | |
| --dataset_name=hf-internal-testing/fill10 | |
| --output_dir={tmpdir} | |
| --resolution=64 | |
| --train_batch_size=1 | |
| --gradient_accumulation_steps=1 | |
| --max_train_steps=6 | |
| --checkpoints_total_limit=2 | |
| --checkpointing_steps=2 | |
| --controlnet_model_name_or_path=hf-internal-testing/tiny-controlnet | |
| """.split() | |
| run_command(self._launch_args + test_args) | |
| self.assertEqual( | |
| {x for x in os.listdir(tmpdir) if "checkpoint" in x}, | |
| {"checkpoint-4", "checkpoint-6"}, | |
| ) | |
| def test_controlnet_checkpointing_checkpoints_total_limit_removes_multiple_checkpoints(self): | |
| with tempfile.TemporaryDirectory() as tmpdir: | |
| test_args = f""" | |
| examples/controlnet/train_controlnet.py | |
| --pretrained_model_name_or_path=hf-internal-testing/tiny-stable-diffusion-pipe | |
| --dataset_name=hf-internal-testing/fill10 | |
| --output_dir={tmpdir} | |
| --resolution=64 | |
| --train_batch_size=1 | |
| --gradient_accumulation_steps=1 | |
| --controlnet_model_name_or_path=hf-internal-testing/tiny-controlnet | |
| --max_train_steps=6 | |
| --checkpointing_steps=2 | |
| """.split() | |
| run_command(self._launch_args + test_args) | |
| self.assertEqual( | |
| {x for x in os.listdir(tmpdir) if "checkpoint" in x}, | |
| {"checkpoint-2", "checkpoint-4", "checkpoint-6"}, | |
| ) | |
| resume_run_args = f""" | |
| examples/controlnet/train_controlnet.py | |
| --pretrained_model_name_or_path=hf-internal-testing/tiny-stable-diffusion-pipe | |
| --dataset_name=hf-internal-testing/fill10 | |
| --output_dir={tmpdir} | |
| --resolution=64 | |
| --train_batch_size=1 | |
| --gradient_accumulation_steps=1 | |
| --controlnet_model_name_or_path=hf-internal-testing/tiny-controlnet | |
| --max_train_steps=8 | |
| --checkpointing_steps=2 | |
| --resume_from_checkpoint=checkpoint-6 | |
| --checkpoints_total_limit=2 | |
| """.split() | |
| run_command(self._launch_args + resume_run_args) | |
| self.assertEqual({x for x in os.listdir(tmpdir) if "checkpoint" in x}, {"checkpoint-6", "checkpoint-8"}) | |
| class ControlNetSDXL(ExamplesTestsAccelerate): | |
| def test_controlnet_sdxl(self): | |
| with tempfile.TemporaryDirectory() as tmpdir: | |
| test_args = f""" | |
| examples/controlnet/train_controlnet_sdxl.py | |
| --pretrained_model_name_or_path=hf-internal-testing/tiny-stable-diffusion-xl-pipe | |
| --dataset_name=hf-internal-testing/fill10 | |
| --output_dir={tmpdir} | |
| --resolution=64 | |
| --train_batch_size=1 | |
| --gradient_accumulation_steps=1 | |
| --controlnet_model_name_or_path=hf-internal-testing/tiny-controlnet-sdxl | |
| --max_train_steps=4 | |
| --checkpointing_steps=2 | |
| """.split() | |
| run_command(self._launch_args + test_args) | |
| self.assertTrue(os.path.isfile(os.path.join(tmpdir, "diffusion_pytorch_model.safetensors"))) | |
| class ControlNetSD3(ExamplesTestsAccelerate): | |
| def test_controlnet_sd3(self): | |
| with tempfile.TemporaryDirectory() as tmpdir: | |
| test_args = f""" | |
| examples/controlnet/train_controlnet_sd3.py | |
| --pretrained_model_name_or_path=DavyMorgan/tiny-sd3-pipe | |
| --dataset_name=hf-internal-testing/fill10 | |
| --output_dir={tmpdir} | |
| --resolution=64 | |
| --train_batch_size=1 | |
| --gradient_accumulation_steps=1 | |
| --controlnet_model_name_or_path=DavyMorgan/tiny-controlnet-sd3 | |
| --max_train_steps=4 | |
| --checkpointing_steps=2 | |
| """.split() | |
| run_command(self._launch_args + test_args) | |
| self.assertTrue(os.path.isfile(os.path.join(tmpdir, "diffusion_pytorch_model.safetensors"))) | |
| class ControlNetSD35(ExamplesTestsAccelerate): | |
| def test_controlnet_sd3(self): | |
| with tempfile.TemporaryDirectory() as tmpdir: | |
| test_args = f""" | |
| examples/controlnet/train_controlnet_sd3.py | |
| --pretrained_model_name_or_path=hf-internal-testing/tiny-sd35-pipe | |
| --dataset_name=hf-internal-testing/fill10 | |
| --output_dir={tmpdir} | |
| --resolution=64 | |
| --train_batch_size=1 | |
| --gradient_accumulation_steps=1 | |
| --controlnet_model_name_or_path=DavyMorgan/tiny-controlnet-sd35 | |
| --max_train_steps=4 | |
| --checkpointing_steps=2 | |
| """.split() | |
| run_command(self._launch_args + test_args) | |
| self.assertTrue(os.path.isfile(os.path.join(tmpdir, "diffusion_pytorch_model.safetensors"))) | |
| class ControlNetflux(ExamplesTestsAccelerate): | |
| def test_controlnet_flux(self): | |
| with tempfile.TemporaryDirectory() as tmpdir: | |
| test_args = f""" | |
| examples/controlnet/train_controlnet_flux.py | |
| --pretrained_model_name_or_path=hf-internal-testing/tiny-flux-pipe | |
| --output_dir={tmpdir} | |
| --dataset_name=hf-internal-testing/fill10 | |
| --conditioning_image_column=conditioning_image | |
| --image_column=image | |
| --caption_column=text | |
| --resolution=64 | |
| --train_batch_size=1 | |
| --gradient_accumulation_steps=1 | |
| --max_train_steps=4 | |
| --checkpointing_steps=2 | |
| --num_double_layers=1 | |
| --num_single_layers=1 | |
| """.split() | |
| run_command(self._launch_args + test_args) | |
| self.assertTrue(os.path.isfile(os.path.join(tmpdir, "diffusion_pytorch_model.safetensors"))) | |