Spaces:
Running
on
Zero
Running
on
Zero
GeoRemover
/
code_edit
/diffusers
/examples
/research_projects
/promptdiffusion
/promptdiffusioncontrolnet.py
| # Copyright 2023 The HuggingFace Team. All rights reserved. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| from typing import Any, Dict, Optional, Tuple, Union | |
| import torch | |
| from diffusers.configuration_utils import register_to_config | |
| from diffusers.models.controlnet import ( | |
| ControlNetConditioningEmbedding, | |
| ControlNetModel, | |
| ControlNetOutput, | |
| ) | |
| from diffusers.utils import logging | |
| logger = logging.get_logger(__name__) # pylint: disable=invalid-name | |
| class PromptDiffusionControlNetModel(ControlNetModel): | |
| """ | |
| A PromptDiffusionControlNet model. | |
| Args: | |
| in_channels (`int`, defaults to 4): | |
| The number of channels in the input sample. | |
| flip_sin_to_cos (`bool`, defaults to `True`): | |
| Whether to flip the sin to cos in the time embedding. | |
| freq_shift (`int`, defaults to 0): | |
| The frequency shift to apply to the time embedding. | |
| down_block_types (`tuple[str]`, defaults to `("CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "DownBlock2D")`): | |
| The tuple of downsample blocks to use. | |
| only_cross_attention (`Union[bool, Tuple[bool]]`, defaults to `False`): | |
| block_out_channels (`tuple[int]`, defaults to `(320, 640, 1280, 1280)`): | |
| The tuple of output channels for each block. | |
| layers_per_block (`int`, defaults to 2): | |
| The number of layers per block. | |
| downsample_padding (`int`, defaults to 1): | |
| The padding to use for the downsampling convolution. | |
| mid_block_scale_factor (`float`, defaults to 1): | |
| The scale factor to use for the mid block. | |
| act_fn (`str`, defaults to "silu"): | |
| The activation function to use. | |
| norm_num_groups (`int`, *optional*, defaults to 32): | |
| The number of groups to use for the normalization. If None, normalization and activation layers is skipped | |
| in post-processing. | |
| norm_eps (`float`, defaults to 1e-5): | |
| The epsilon to use for the normalization. | |
| cross_attention_dim (`int`, defaults to 1280): | |
| The dimension of the cross attention features. | |
| transformer_layers_per_block (`int` or `Tuple[int]`, *optional*, defaults to 1): | |
| The number of transformer blocks of type [`~models.attention.BasicTransformerBlock`]. Only relevant for | |
| [`~models.unet_2d_blocks.CrossAttnDownBlock2D`], [`~models.unet_2d_blocks.CrossAttnUpBlock2D`], | |
| [`~models.unet_2d_blocks.UNetMidBlock2DCrossAttn`]. | |
| encoder_hid_dim (`int`, *optional*, defaults to None): | |
| If `encoder_hid_dim_type` is defined, `encoder_hidden_states` will be projected from `encoder_hid_dim` | |
| dimension to `cross_attention_dim`. | |
| encoder_hid_dim_type (`str`, *optional*, defaults to `None`): | |
| If given, the `encoder_hidden_states` and potentially other embeddings are down-projected to text | |
| embeddings of dimension `cross_attention` according to `encoder_hid_dim_type`. | |
| attention_head_dim (`Union[int, Tuple[int]]`, defaults to 8): | |
| The dimension of the attention heads. | |
| use_linear_projection (`bool`, defaults to `False`): | |
| class_embed_type (`str`, *optional*, defaults to `None`): | |
| The type of class embedding to use which is ultimately summed with the time embeddings. Choose from None, | |
| `"timestep"`, `"identity"`, `"projection"`, or `"simple_projection"`. | |
| addition_embed_type (`str`, *optional*, defaults to `None`): | |
| Configures an optional embedding which will be summed with the time embeddings. Choose from `None` or | |
| "text". "text" will use the `TextTimeEmbedding` layer. | |
| num_class_embeds (`int`, *optional*, defaults to 0): | |
| Input dimension of the learnable embedding matrix to be projected to `time_embed_dim`, when performing | |
| class conditioning with `class_embed_type` equal to `None`. | |
| upcast_attention (`bool`, defaults to `False`): | |
| resnet_time_scale_shift (`str`, defaults to `"default"`): | |
| Time scale shift config for ResNet blocks (see `ResnetBlock2D`). Choose from `default` or `scale_shift`. | |
| projection_class_embeddings_input_dim (`int`, *optional*, defaults to `None`): | |
| The dimension of the `class_labels` input when `class_embed_type="projection"`. Required when | |
| `class_embed_type="projection"`. | |
| controlnet_conditioning_channel_order (`str`, defaults to `"rgb"`): | |
| The channel order of conditional image. Will convert to `rgb` if it's `bgr`. | |
| conditioning_embedding_out_channels (`tuple[int]`, *optional*, defaults to `(16, 32, 96, 256)`): | |
| The tuple of output channel for each block in the `conditioning_embedding` layer. | |
| global_pool_conditions (`bool`, defaults to `False`): | |
| TODO(Patrick) - unused parameter. | |
| addition_embed_type_num_heads (`int`, defaults to 64): | |
| The number of heads to use for the `TextTimeEmbedding` layer. | |
| """ | |
| _supports_gradient_checkpointing = True | |
| def __init__( | |
| self, | |
| in_channels: int = 4, | |
| conditioning_channels: int = 3, | |
| flip_sin_to_cos: bool = True, | |
| freq_shift: int = 0, | |
| down_block_types: Tuple[str, ...] = ( | |
| "CrossAttnDownBlock2D", | |
| "CrossAttnDownBlock2D", | |
| "CrossAttnDownBlock2D", | |
| "DownBlock2D", | |
| ), | |
| mid_block_type: Optional[str] = "UNetMidBlock2DCrossAttn", | |
| only_cross_attention: Union[bool, Tuple[bool]] = False, | |
| block_out_channels: Tuple[int, ...] = (320, 640, 1280, 1280), | |
| layers_per_block: int = 2, | |
| downsample_padding: int = 1, | |
| mid_block_scale_factor: float = 1, | |
| act_fn: str = "silu", | |
| norm_num_groups: Optional[int] = 32, | |
| norm_eps: float = 1e-5, | |
| cross_attention_dim: int = 1280, | |
| transformer_layers_per_block: Union[int, Tuple[int, ...]] = 1, | |
| encoder_hid_dim: Optional[int] = None, | |
| encoder_hid_dim_type: Optional[str] = None, | |
| attention_head_dim: Union[int, Tuple[int, ...]] = 8, | |
| num_attention_heads: Optional[Union[int, Tuple[int, ...]]] = None, | |
| use_linear_projection: bool = False, | |
| class_embed_type: Optional[str] = None, | |
| addition_embed_type: Optional[str] = None, | |
| addition_time_embed_dim: Optional[int] = None, | |
| num_class_embeds: Optional[int] = None, | |
| upcast_attention: bool = False, | |
| resnet_time_scale_shift: str = "default", | |
| projection_class_embeddings_input_dim: Optional[int] = None, | |
| controlnet_conditioning_channel_order: str = "rgb", | |
| conditioning_embedding_out_channels: Optional[Tuple[int, ...]] = (16, 32, 96, 256), | |
| global_pool_conditions: bool = False, | |
| addition_embed_type_num_heads: int = 64, | |
| ): | |
| super().__init__( | |
| in_channels, | |
| conditioning_channels, | |
| flip_sin_to_cos, | |
| freq_shift, | |
| down_block_types, | |
| mid_block_type, | |
| only_cross_attention, | |
| block_out_channels, | |
| layers_per_block, | |
| downsample_padding, | |
| mid_block_scale_factor, | |
| act_fn, | |
| norm_num_groups, | |
| norm_eps, | |
| cross_attention_dim, | |
| transformer_layers_per_block, | |
| encoder_hid_dim, | |
| encoder_hid_dim_type, | |
| attention_head_dim, | |
| num_attention_heads, | |
| use_linear_projection, | |
| class_embed_type, | |
| addition_embed_type, | |
| addition_time_embed_dim, | |
| num_class_embeds, | |
| upcast_attention, | |
| resnet_time_scale_shift, | |
| projection_class_embeddings_input_dim, | |
| controlnet_conditioning_channel_order, | |
| conditioning_embedding_out_channels, | |
| global_pool_conditions, | |
| addition_embed_type_num_heads, | |
| ) | |
| self.controlnet_query_cond_embedding = ControlNetConditioningEmbedding( | |
| conditioning_embedding_channels=block_out_channels[0], | |
| block_out_channels=conditioning_embedding_out_channels, | |
| conditioning_channels=3, | |
| ) | |
| def forward( | |
| self, | |
| sample: torch.Tensor, | |
| timestep: Union[torch.Tensor, float, int], | |
| encoder_hidden_states: torch.Tensor, | |
| controlnet_cond: torch.Tensor, | |
| controlnet_query_cond: torch.Tensor, | |
| conditioning_scale: float = 1.0, | |
| class_labels: Optional[torch.Tensor] = None, | |
| timestep_cond: Optional[torch.Tensor] = None, | |
| attention_mask: Optional[torch.Tensor] = None, | |
| added_cond_kwargs: Optional[Dict[str, torch.Tensor]] = None, | |
| cross_attention_kwargs: Optional[Dict[str, Any]] = None, | |
| guess_mode: bool = False, | |
| return_dict: bool = True, | |
| ) -> Union[ControlNetOutput, Tuple[Tuple[torch.Tensor, ...], torch.Tensor]]: | |
| """ | |
| The [`~PromptDiffusionControlNetModel`] forward method. | |
| Args: | |
| sample (`torch.Tensor`): | |
| The noisy input tensor. | |
| timestep (`Union[torch.Tensor, float, int]`): | |
| The number of timesteps to denoise an input. | |
| encoder_hidden_states (`torch.Tensor`): | |
| The encoder hidden states. | |
| controlnet_cond (`torch.Tensor`): | |
| The conditional input tensor of shape `(batch_size, sequence_length, hidden_size)`. | |
| controlnet_query_cond (`torch.Tensor`): | |
| The conditional input tensor of shape `(batch_size, sequence_length, hidden_size)`. | |
| conditioning_scale (`float`, defaults to `1.0`): | |
| The scale factor for ControlNet outputs. | |
| class_labels (`torch.Tensor`, *optional*, defaults to `None`): | |
| Optional class labels for conditioning. Their embeddings will be summed with the timestep embeddings. | |
| timestep_cond (`torch.Tensor`, *optional*, defaults to `None`): | |
| Additional conditional embeddings for timestep. If provided, the embeddings will be summed with the | |
| timestep_embedding passed through the `self.time_embedding` layer to obtain the final timestep | |
| embeddings. | |
| attention_mask (`torch.Tensor`, *optional*, defaults to `None`): | |
| An attention mask of shape `(batch, key_tokens)` is applied to `encoder_hidden_states`. If `1` the mask | |
| is kept, otherwise if `0` it is discarded. Mask will be converted into a bias, which adds large | |
| negative values to the attention scores corresponding to "discard" tokens. | |
| added_cond_kwargs (`dict`): | |
| Additional conditions for the Stable Diffusion XL UNet. | |
| cross_attention_kwargs (`dict[str]`, *optional*, defaults to `None`): | |
| A kwargs dictionary that if specified is passed along to the `AttnProcessor`. | |
| guess_mode (`bool`, defaults to `False`): | |
| In this mode, the ControlNet encoder tries its best to recognize the input content of the input even if | |
| you remove all prompts. A `guidance_scale` between 3.0 and 5.0 is recommended. | |
| return_dict (`bool`, defaults to `True`): | |
| Whether or not to return a [`~models.controlnets.controlnet.ControlNetOutput`] instead of a plain tuple. | |
| Returns: | |
| [`~models.controlnets.controlnet.ControlNetOutput`] **or** `tuple`: | |
| If `return_dict` is `True`, a [`~models.controlnets.controlnet.ControlNetOutput`] is returned, otherwise a tuple is | |
| returned where the first element is the sample tensor. | |
| """ | |
| # check channel order | |
| channel_order = self.config.controlnet_conditioning_channel_order | |
| if channel_order == "rgb": | |
| # in rgb order by default | |
| ... | |
| elif channel_order == "bgr": | |
| controlnet_cond = torch.flip(controlnet_cond, dims=[1]) | |
| else: | |
| raise ValueError(f"unknown `controlnet_conditioning_channel_order`: {channel_order}") | |
| # prepare attention_mask | |
| if attention_mask is not None: | |
| attention_mask = (1 - attention_mask.to(sample.dtype)) * -10000.0 | |
| attention_mask = attention_mask.unsqueeze(1) | |
| # 1. time | |
| timesteps = timestep | |
| if not torch.is_tensor(timesteps): | |
| # TODO: this requires sync between CPU and GPU. So try to pass timesteps as tensors if you can | |
| # This would be a good case for the `match` statement (Python 3.10+) | |
| is_mps = sample.device.type == "mps" | |
| is_npu = sample.device.type == "npu" | |
| if isinstance(timestep, float): | |
| dtype = torch.float32 if (is_mps or is_npu) else torch.float64 | |
| else: | |
| dtype = torch.int32 if (is_mps or is_npu) else torch.int64 | |
| timesteps = torch.tensor([timesteps], dtype=dtype, device=sample.device) | |
| elif len(timesteps.shape) == 0: | |
| timesteps = timesteps[None].to(sample.device) | |
| # broadcast to batch dimension in a way that's compatible with ONNX/Core ML | |
| timesteps = timesteps.expand(sample.shape[0]) | |
| t_emb = self.time_proj(timesteps) | |
| # timesteps does not contain any weights and will always return f32 tensors | |
| # but time_embedding might actually be running in fp16. so we need to cast here. | |
| # there might be better ways to encapsulate this. | |
| t_emb = t_emb.to(dtype=sample.dtype) | |
| emb = self.time_embedding(t_emb, timestep_cond) | |
| aug_emb = None | |
| if self.class_embedding is not None: | |
| if class_labels is None: | |
| raise ValueError("class_labels should be provided when num_class_embeds > 0") | |
| if self.config.class_embed_type == "timestep": | |
| class_labels = self.time_proj(class_labels) | |
| class_emb = self.class_embedding(class_labels).to(dtype=self.dtype) | |
| emb = emb + class_emb | |
| if self.config.addition_embed_type is not None: | |
| if self.config.addition_embed_type == "text": | |
| aug_emb = self.add_embedding(encoder_hidden_states) | |
| elif self.config.addition_embed_type == "text_time": | |
| if "text_embeds" not in added_cond_kwargs: | |
| raise ValueError( | |
| f"{self.__class__} has the config param `addition_embed_type` set to 'text_time' which requires the keyword argument `text_embeds` to be passed in `added_cond_kwargs`" | |
| ) | |
| text_embeds = added_cond_kwargs.get("text_embeds") | |
| if "time_ids" not in added_cond_kwargs: | |
| raise ValueError( | |
| f"{self.__class__} has the config param `addition_embed_type` set to 'text_time' which requires the keyword argument `time_ids` to be passed in `added_cond_kwargs`" | |
| ) | |
| time_ids = added_cond_kwargs.get("time_ids") | |
| time_embeds = self.add_time_proj(time_ids.flatten()) | |
| time_embeds = time_embeds.reshape((text_embeds.shape[0], -1)) | |
| add_embeds = torch.concat([text_embeds, time_embeds], dim=-1) | |
| add_embeds = add_embeds.to(emb.dtype) | |
| aug_emb = self.add_embedding(add_embeds) | |
| emb = emb + aug_emb if aug_emb is not None else emb | |
| # 2. pre-process | |
| sample = self.conv_in(sample) | |
| controlnet_cond = self.controlnet_cond_embedding(controlnet_cond) | |
| controlnet_query_cond = self.controlnet_query_cond_embedding(controlnet_query_cond) | |
| sample = sample + controlnet_cond + controlnet_query_cond | |
| # 3. down | |
| down_block_res_samples = (sample,) | |
| for downsample_block in self.down_blocks: | |
| if hasattr(downsample_block, "has_cross_attention") and downsample_block.has_cross_attention: | |
| sample, res_samples = downsample_block( | |
| hidden_states=sample, | |
| temb=emb, | |
| encoder_hidden_states=encoder_hidden_states, | |
| attention_mask=attention_mask, | |
| cross_attention_kwargs=cross_attention_kwargs, | |
| ) | |
| else: | |
| sample, res_samples = downsample_block(hidden_states=sample, temb=emb) | |
| down_block_res_samples += res_samples | |
| # 4. mid | |
| if self.mid_block is not None: | |
| if hasattr(self.mid_block, "has_cross_attention") and self.mid_block.has_cross_attention: | |
| sample = self.mid_block( | |
| sample, | |
| emb, | |
| encoder_hidden_states=encoder_hidden_states, | |
| attention_mask=attention_mask, | |
| cross_attention_kwargs=cross_attention_kwargs, | |
| ) | |
| else: | |
| sample = self.mid_block(sample, emb) | |
| # 5. Control net blocks | |
| controlnet_down_block_res_samples = () | |
| for down_block_res_sample, controlnet_block in zip(down_block_res_samples, self.controlnet_down_blocks): | |
| down_block_res_sample = controlnet_block(down_block_res_sample) | |
| controlnet_down_block_res_samples = controlnet_down_block_res_samples + (down_block_res_sample,) | |
| down_block_res_samples = controlnet_down_block_res_samples | |
| mid_block_res_sample = self.controlnet_mid_block(sample) | |
| # 6. scaling | |
| if guess_mode and not self.config.global_pool_conditions: | |
| scales = torch.logspace(-1, 0, len(down_block_res_samples) + 1, device=sample.device) # 0.1 to 1.0 | |
| scales = scales * conditioning_scale | |
| down_block_res_samples = [sample * scale for sample, scale in zip(down_block_res_samples, scales)] | |
| mid_block_res_sample = mid_block_res_sample * scales[-1] # last one | |
| else: | |
| down_block_res_samples = [sample * conditioning_scale for sample in down_block_res_samples] | |
| mid_block_res_sample = mid_block_res_sample * conditioning_scale | |
| if self.config.global_pool_conditions: | |
| down_block_res_samples = [ | |
| torch.mean(sample, dim=(2, 3), keepdim=True) for sample in down_block_res_samples | |
| ] | |
| mid_block_res_sample = torch.mean(mid_block_res_sample, dim=(2, 3), keepdim=True) | |
| if not return_dict: | |
| return (down_block_res_samples, mid_block_res_sample) | |
| return ControlNetOutput( | |
| down_block_res_samples=down_block_res_samples, mid_block_res_sample=mid_block_res_sample | |
| ) | |