GeoRemover / code_edit /diffusers /tests /hooks /test_group_offloading.py
zixinz
Add application file
5a0778e
# Copyright 2024 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import gc
import unittest
import torch
from diffusers.models import ModelMixin
from diffusers.pipelines.pipeline_utils import DiffusionPipeline
from diffusers.utils import get_logger
from diffusers.utils.testing_utils import require_torch_gpu, torch_device
class DummyBlock(torch.nn.Module):
def __init__(self, in_features: int, hidden_features: int, out_features: int) -> None:
super().__init__()
self.proj_in = torch.nn.Linear(in_features, hidden_features)
self.activation = torch.nn.ReLU()
self.proj_out = torch.nn.Linear(hidden_features, out_features)
def forward(self, x: torch.Tensor) -> torch.Tensor:
x = self.proj_in(x)
x = self.activation(x)
x = self.proj_out(x)
return x
class DummyModel(ModelMixin):
def __init__(self, in_features: int, hidden_features: int, out_features: int, num_layers: int) -> None:
super().__init__()
self.linear_1 = torch.nn.Linear(in_features, hidden_features)
self.activation = torch.nn.ReLU()
self.blocks = torch.nn.ModuleList(
[DummyBlock(hidden_features, hidden_features, hidden_features) for _ in range(num_layers)]
)
self.linear_2 = torch.nn.Linear(hidden_features, out_features)
def forward(self, x: torch.Tensor) -> torch.Tensor:
x = self.linear_1(x)
x = self.activation(x)
for block in self.blocks:
x = block(x)
x = self.linear_2(x)
return x
class DummyPipeline(DiffusionPipeline):
model_cpu_offload_seq = "model"
def __init__(self, model: torch.nn.Module) -> None:
super().__init__()
self.register_modules(model=model)
def __call__(self, x: torch.Tensor) -> torch.Tensor:
for _ in range(2):
x = x + 0.1 * self.model(x)
return x
@require_torch_gpu
class GroupOffloadTests(unittest.TestCase):
in_features = 64
hidden_features = 256
out_features = 64
num_layers = 4
def setUp(self):
with torch.no_grad():
self.model = self.get_model()
self.input = torch.randn((4, self.in_features)).to(torch_device)
def tearDown(self):
super().tearDown()
del self.model
del self.input
gc.collect()
torch.cuda.empty_cache()
torch.cuda.reset_peak_memory_stats()
def get_model(self):
torch.manual_seed(0)
return DummyModel(
in_features=self.in_features,
hidden_features=self.hidden_features,
out_features=self.out_features,
num_layers=self.num_layers,
)
def test_offloading_forward_pass(self):
@torch.no_grad()
def run_forward(model):
gc.collect()
torch.cuda.empty_cache()
torch.cuda.reset_peak_memory_stats()
self.assertTrue(
all(
module._diffusers_hook.get_hook("group_offloading") is not None
for module in model.modules()
if hasattr(module, "_diffusers_hook")
)
)
model.eval()
output = model(self.input)[0].cpu()
max_memory_allocated = torch.cuda.max_memory_allocated()
return output, max_memory_allocated
self.model.to(torch_device)
output_without_group_offloading, mem_baseline = run_forward(self.model)
self.model.to("cpu")
model = self.get_model()
model.enable_group_offload(torch_device, offload_type="block_level", num_blocks_per_group=3)
output_with_group_offloading1, mem1 = run_forward(model)
model = self.get_model()
model.enable_group_offload(torch_device, offload_type="block_level", num_blocks_per_group=1)
output_with_group_offloading2, mem2 = run_forward(model)
model = self.get_model()
model.enable_group_offload(torch_device, offload_type="block_level", num_blocks_per_group=1, use_stream=True)
output_with_group_offloading3, mem3 = run_forward(model)
model = self.get_model()
model.enable_group_offload(torch_device, offload_type="leaf_level")
output_with_group_offloading4, mem4 = run_forward(model)
model = self.get_model()
model.enable_group_offload(torch_device, offload_type="leaf_level", use_stream=True)
output_with_group_offloading5, mem5 = run_forward(model)
# Precision assertions - offloading should not impact the output
self.assertTrue(torch.allclose(output_without_group_offloading, output_with_group_offloading1, atol=1e-5))
self.assertTrue(torch.allclose(output_without_group_offloading, output_with_group_offloading2, atol=1e-5))
self.assertTrue(torch.allclose(output_without_group_offloading, output_with_group_offloading3, atol=1e-5))
self.assertTrue(torch.allclose(output_without_group_offloading, output_with_group_offloading4, atol=1e-5))
self.assertTrue(torch.allclose(output_without_group_offloading, output_with_group_offloading5, atol=1e-5))
# Memory assertions - offloading should reduce memory usage
self.assertTrue(mem4 <= mem5 < mem2 < mem3 < mem1 < mem_baseline)
def test_warning_logged_if_group_offloaded_module_moved_to_cuda(self):
if torch.device(torch_device).type != "cuda":
return
self.model.enable_group_offload(torch_device, offload_type="block_level", num_blocks_per_group=3)
logger = get_logger("diffusers.models.modeling_utils")
logger.setLevel("INFO")
with self.assertLogs(logger, level="WARNING") as cm:
self.model.to(torch_device)
self.assertIn(f"The module '{self.model.__class__.__name__}' is group offloaded", cm.output[0])
def test_warning_logged_if_group_offloaded_pipe_moved_to_cuda(self):
if torch.device(torch_device).type != "cuda":
return
pipe = DummyPipeline(self.model)
self.model.enable_group_offload(torch_device, offload_type="block_level", num_blocks_per_group=3)
logger = get_logger("diffusers.pipelines.pipeline_utils")
logger.setLevel("INFO")
with self.assertLogs(logger, level="WARNING") as cm:
pipe.to(torch_device)
self.assertIn(f"The module '{self.model.__class__.__name__}' is group offloaded", cm.output[0])
def test_error_raised_if_streams_used_and_no_cuda_device(self):
original_is_available = torch.cuda.is_available
torch.cuda.is_available = lambda: False
with self.assertRaises(ValueError):
self.model.enable_group_offload(
onload_device=torch.device("cuda"), offload_type="leaf_level", use_stream=True
)
torch.cuda.is_available = original_is_available
def test_error_raised_if_supports_group_offloading_false(self):
self.model._supports_group_offloading = False
with self.assertRaisesRegex(ValueError, "does not support group offloading"):
self.model.enable_group_offload(onload_device=torch.device("cuda"))
def test_error_raised_if_model_offloading_applied_on_group_offloaded_module(self):
pipe = DummyPipeline(self.model)
pipe.model.enable_group_offload(torch_device, offload_type="block_level", num_blocks_per_group=3)
with self.assertRaisesRegex(ValueError, "You are trying to apply model/sequential CPU offloading"):
pipe.enable_model_cpu_offload()
def test_error_raised_if_sequential_offloading_applied_on_group_offloaded_module(self):
pipe = DummyPipeline(self.model)
pipe.model.enable_group_offload(torch_device, offload_type="block_level", num_blocks_per_group=3)
with self.assertRaisesRegex(ValueError, "You are trying to apply model/sequential CPU offloading"):
pipe.enable_sequential_cpu_offload()
def test_error_raised_if_group_offloading_applied_on_model_offloaded_module(self):
pipe = DummyPipeline(self.model)
pipe.enable_model_cpu_offload()
with self.assertRaisesRegex(ValueError, "Cannot apply group offloading"):
pipe.model.enable_group_offload(torch_device, offload_type="block_level", num_blocks_per_group=3)
def test_error_raised_if_group_offloading_applied_on_sequential_offloaded_module(self):
pipe = DummyPipeline(self.model)
pipe.enable_sequential_cpu_offload()
with self.assertRaisesRegex(ValueError, "Cannot apply group offloading"):
pipe.model.enable_group_offload(torch_device, offload_type="block_level", num_blocks_per_group=3)