Spaces:
Running
on
Zero
Running
on
Zero
| # coding=utf-8 | |
| # Copyright 2024 HuggingFace Inc. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| import gc | |
| import tempfile | |
| import traceback | |
| import unittest | |
| import numpy as np | |
| import torch | |
| from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer | |
| from diffusers import ( | |
| AutoencoderKL, | |
| ControlNetModel, | |
| DDIMScheduler, | |
| EulerDiscreteScheduler, | |
| LCMScheduler, | |
| StableDiffusionControlNetPipeline, | |
| UNet2DConditionModel, | |
| ) | |
| from diffusers.pipelines.controlnet.pipeline_controlnet import MultiControlNetModel | |
| from diffusers.utils.import_utils import is_xformers_available | |
| from diffusers.utils.testing_utils import ( | |
| backend_empty_cache, | |
| backend_max_memory_allocated, | |
| backend_reset_max_memory_allocated, | |
| backend_reset_peak_memory_stats, | |
| enable_full_determinism, | |
| get_python_version, | |
| is_torch_compile, | |
| load_image, | |
| load_numpy, | |
| require_torch_2, | |
| require_torch_accelerator, | |
| run_test_in_subprocess, | |
| slow, | |
| torch_device, | |
| ) | |
| from diffusers.utils.torch_utils import randn_tensor | |
| from ..pipeline_params import ( | |
| IMAGE_TO_IMAGE_IMAGE_PARAMS, | |
| TEXT_TO_IMAGE_BATCH_PARAMS, | |
| TEXT_TO_IMAGE_IMAGE_PARAMS, | |
| TEXT_TO_IMAGE_PARAMS, | |
| ) | |
| from ..test_pipelines_common import ( | |
| IPAdapterTesterMixin, | |
| PipelineKarrasSchedulerTesterMixin, | |
| PipelineLatentTesterMixin, | |
| PipelineTesterMixin, | |
| ) | |
| enable_full_determinism() | |
| # Will be run via run_test_in_subprocess | |
| def _test_stable_diffusion_compile(in_queue, out_queue, timeout): | |
| error = None | |
| try: | |
| _ = in_queue.get(timeout=timeout) | |
| controlnet = ControlNetModel.from_pretrained("lllyasviel/sd-controlnet-canny") | |
| pipe = StableDiffusionControlNetPipeline.from_pretrained( | |
| "stable-diffusion-v1-5/stable-diffusion-v1-5", safety_checker=None, controlnet=controlnet | |
| ) | |
| pipe.to("cuda") | |
| pipe.set_progress_bar_config(disable=None) | |
| pipe.unet.to(memory_format=torch.channels_last) | |
| pipe.unet = torch.compile(pipe.unet, mode="reduce-overhead", fullgraph=True) | |
| pipe.controlnet.to(memory_format=torch.channels_last) | |
| pipe.controlnet = torch.compile(pipe.controlnet, mode="reduce-overhead", fullgraph=True) | |
| generator = torch.Generator(device="cpu").manual_seed(0) | |
| prompt = "bird" | |
| image = load_image( | |
| "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/bird_canny.png" | |
| ).resize((512, 512)) | |
| output = pipe(prompt, image, num_inference_steps=10, generator=generator, output_type="np") | |
| image = output.images[0] | |
| assert image.shape == (512, 512, 3) | |
| expected_image = load_numpy( | |
| "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/bird_canny_out_full.npy" | |
| ) | |
| expected_image = np.resize(expected_image, (512, 512, 3)) | |
| assert np.abs(expected_image - image).max() < 1.0 | |
| except Exception: | |
| error = f"{traceback.format_exc()}" | |
| results = {"error": error} | |
| out_queue.put(results, timeout=timeout) | |
| out_queue.join() | |
| class ControlNetPipelineFastTests( | |
| IPAdapterTesterMixin, | |
| PipelineLatentTesterMixin, | |
| PipelineKarrasSchedulerTesterMixin, | |
| PipelineTesterMixin, | |
| unittest.TestCase, | |
| ): | |
| pipeline_class = StableDiffusionControlNetPipeline | |
| params = TEXT_TO_IMAGE_PARAMS | |
| batch_params = TEXT_TO_IMAGE_BATCH_PARAMS | |
| image_params = IMAGE_TO_IMAGE_IMAGE_PARAMS | |
| image_latents_params = TEXT_TO_IMAGE_IMAGE_PARAMS | |
| test_layerwise_casting = True | |
| test_group_offloading = True | |
| def get_dummy_components(self, time_cond_proj_dim=None): | |
| torch.manual_seed(0) | |
| unet = UNet2DConditionModel( | |
| block_out_channels=(4, 8), | |
| layers_per_block=2, | |
| sample_size=32, | |
| in_channels=4, | |
| out_channels=4, | |
| down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"), | |
| up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"), | |
| cross_attention_dim=32, | |
| norm_num_groups=1, | |
| time_cond_proj_dim=time_cond_proj_dim, | |
| ) | |
| torch.manual_seed(0) | |
| controlnet = ControlNetModel( | |
| block_out_channels=(4, 8), | |
| layers_per_block=2, | |
| in_channels=4, | |
| down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"), | |
| cross_attention_dim=32, | |
| conditioning_embedding_out_channels=(16, 32), | |
| norm_num_groups=1, | |
| ) | |
| torch.manual_seed(0) | |
| scheduler = DDIMScheduler( | |
| beta_start=0.00085, | |
| beta_end=0.012, | |
| beta_schedule="scaled_linear", | |
| clip_sample=False, | |
| set_alpha_to_one=False, | |
| ) | |
| torch.manual_seed(0) | |
| vae = AutoencoderKL( | |
| block_out_channels=[4, 8], | |
| in_channels=3, | |
| out_channels=3, | |
| down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"], | |
| up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"], | |
| latent_channels=4, | |
| norm_num_groups=2, | |
| ) | |
| torch.manual_seed(0) | |
| text_encoder_config = CLIPTextConfig( | |
| bos_token_id=0, | |
| eos_token_id=2, | |
| hidden_size=32, | |
| intermediate_size=37, | |
| layer_norm_eps=1e-05, | |
| num_attention_heads=4, | |
| num_hidden_layers=5, | |
| pad_token_id=1, | |
| vocab_size=1000, | |
| ) | |
| text_encoder = CLIPTextModel(text_encoder_config) | |
| tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip") | |
| components = { | |
| "unet": unet, | |
| "controlnet": controlnet, | |
| "scheduler": scheduler, | |
| "vae": vae, | |
| "text_encoder": text_encoder, | |
| "tokenizer": tokenizer, | |
| "safety_checker": None, | |
| "feature_extractor": None, | |
| "image_encoder": None, | |
| } | |
| return components | |
| def get_dummy_inputs(self, device, seed=0): | |
| if str(device).startswith("mps"): | |
| generator = torch.manual_seed(seed) | |
| else: | |
| generator = torch.Generator(device=device).manual_seed(seed) | |
| controlnet_embedder_scale_factor = 2 | |
| image = randn_tensor( | |
| (1, 3, 32 * controlnet_embedder_scale_factor, 32 * controlnet_embedder_scale_factor), | |
| generator=generator, | |
| device=torch.device(device), | |
| ) | |
| inputs = { | |
| "prompt": "A painting of a squirrel eating a burger", | |
| "generator": generator, | |
| "num_inference_steps": 2, | |
| "guidance_scale": 6.0, | |
| "output_type": "np", | |
| "image": image, | |
| } | |
| return inputs | |
| def test_attention_slicing_forward_pass(self): | |
| return self._test_attention_slicing_forward_pass(expected_max_diff=2e-3) | |
| def test_ip_adapter(self): | |
| expected_pipe_slice = None | |
| if torch_device == "cpu": | |
| expected_pipe_slice = np.array([0.5234, 0.3333, 0.1745, 0.7605, 0.6224, 0.4637, 0.6989, 0.7526, 0.4665]) | |
| return super().test_ip_adapter(expected_pipe_slice=expected_pipe_slice) | |
| def test_xformers_attention_forwardGenerator_pass(self): | |
| self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=2e-3) | |
| def test_inference_batch_single_identical(self): | |
| self._test_inference_batch_single_identical(expected_max_diff=2e-3) | |
| def test_controlnet_lcm(self): | |
| device = "cpu" # ensure determinism for the device-dependent torch.Generator | |
| components = self.get_dummy_components(time_cond_proj_dim=256) | |
| sd_pipe = StableDiffusionControlNetPipeline(**components) | |
| sd_pipe.scheduler = LCMScheduler.from_config(sd_pipe.scheduler.config) | |
| sd_pipe = sd_pipe.to(torch_device) | |
| sd_pipe.set_progress_bar_config(disable=None) | |
| inputs = self.get_dummy_inputs(device) | |
| output = sd_pipe(**inputs) | |
| image = output.images | |
| image_slice = image[0, -3:, -3:, -1] | |
| assert image.shape == (1, 64, 64, 3) | |
| expected_slice = np.array( | |
| [0.52700454, 0.3930534, 0.25509018, 0.7132304, 0.53696585, 0.46568912, 0.7095368, 0.7059624, 0.4744786] | |
| ) | |
| assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 | |
| def test_controlnet_lcm_custom_timesteps(self): | |
| device = "cpu" # ensure determinism for the device-dependent torch.Generator | |
| components = self.get_dummy_components(time_cond_proj_dim=256) | |
| sd_pipe = StableDiffusionControlNetPipeline(**components) | |
| sd_pipe.scheduler = LCMScheduler.from_config(sd_pipe.scheduler.config) | |
| sd_pipe = sd_pipe.to(torch_device) | |
| sd_pipe.set_progress_bar_config(disable=None) | |
| inputs = self.get_dummy_inputs(device) | |
| del inputs["num_inference_steps"] | |
| inputs["timesteps"] = [999, 499] | |
| output = sd_pipe(**inputs) | |
| image = output.images | |
| image_slice = image[0, -3:, -3:, -1] | |
| assert image.shape == (1, 64, 64, 3) | |
| expected_slice = np.array( | |
| [0.52700454, 0.3930534, 0.25509018, 0.7132304, 0.53696585, 0.46568912, 0.7095368, 0.7059624, 0.4744786] | |
| ) | |
| assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 | |
| class StableDiffusionMultiControlNetPipelineFastTests( | |
| IPAdapterTesterMixin, PipelineTesterMixin, PipelineKarrasSchedulerTesterMixin, unittest.TestCase | |
| ): | |
| pipeline_class = StableDiffusionControlNetPipeline | |
| params = TEXT_TO_IMAGE_PARAMS | |
| batch_params = TEXT_TO_IMAGE_BATCH_PARAMS | |
| image_params = frozenset([]) # TO_DO: add image_params once refactored VaeImageProcessor.preprocess | |
| supports_dduf = False | |
| def get_dummy_components(self): | |
| torch.manual_seed(0) | |
| unet = UNet2DConditionModel( | |
| block_out_channels=(4, 8), | |
| layers_per_block=2, | |
| sample_size=32, | |
| in_channels=4, | |
| out_channels=4, | |
| down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"), | |
| up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"), | |
| cross_attention_dim=32, | |
| norm_num_groups=1, | |
| ) | |
| torch.manual_seed(0) | |
| def init_weights(m): | |
| if isinstance(m, torch.nn.Conv2d): | |
| torch.nn.init.normal_(m.weight) | |
| m.bias.data.fill_(1.0) | |
| controlnet1 = ControlNetModel( | |
| block_out_channels=(4, 8), | |
| layers_per_block=2, | |
| in_channels=4, | |
| down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"), | |
| cross_attention_dim=32, | |
| conditioning_embedding_out_channels=(16, 32), | |
| norm_num_groups=1, | |
| ) | |
| controlnet1.controlnet_down_blocks.apply(init_weights) | |
| torch.manual_seed(0) | |
| controlnet2 = ControlNetModel( | |
| block_out_channels=(4, 8), | |
| layers_per_block=2, | |
| in_channels=4, | |
| down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"), | |
| cross_attention_dim=32, | |
| conditioning_embedding_out_channels=(16, 32), | |
| norm_num_groups=1, | |
| ) | |
| controlnet2.controlnet_down_blocks.apply(init_weights) | |
| torch.manual_seed(0) | |
| scheduler = DDIMScheduler( | |
| beta_start=0.00085, | |
| beta_end=0.012, | |
| beta_schedule="scaled_linear", | |
| clip_sample=False, | |
| set_alpha_to_one=False, | |
| ) | |
| torch.manual_seed(0) | |
| vae = AutoencoderKL( | |
| block_out_channels=[4, 8], | |
| in_channels=3, | |
| out_channels=3, | |
| down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"], | |
| up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"], | |
| latent_channels=4, | |
| norm_num_groups=2, | |
| ) | |
| torch.manual_seed(0) | |
| text_encoder_config = CLIPTextConfig( | |
| bos_token_id=0, | |
| eos_token_id=2, | |
| hidden_size=32, | |
| intermediate_size=37, | |
| layer_norm_eps=1e-05, | |
| num_attention_heads=4, | |
| num_hidden_layers=5, | |
| pad_token_id=1, | |
| vocab_size=1000, | |
| ) | |
| text_encoder = CLIPTextModel(text_encoder_config) | |
| tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip") | |
| controlnet = MultiControlNetModel([controlnet1, controlnet2]) | |
| components = { | |
| "unet": unet, | |
| "controlnet": controlnet, | |
| "scheduler": scheduler, | |
| "vae": vae, | |
| "text_encoder": text_encoder, | |
| "tokenizer": tokenizer, | |
| "safety_checker": None, | |
| "feature_extractor": None, | |
| "image_encoder": None, | |
| } | |
| return components | |
| def get_dummy_inputs(self, device, seed=0): | |
| if str(device).startswith("mps"): | |
| generator = torch.manual_seed(seed) | |
| else: | |
| generator = torch.Generator(device=device).manual_seed(seed) | |
| controlnet_embedder_scale_factor = 2 | |
| images = [ | |
| randn_tensor( | |
| (1, 3, 32 * controlnet_embedder_scale_factor, 32 * controlnet_embedder_scale_factor), | |
| generator=generator, | |
| device=torch.device(device), | |
| ), | |
| randn_tensor( | |
| (1, 3, 32 * controlnet_embedder_scale_factor, 32 * controlnet_embedder_scale_factor), | |
| generator=generator, | |
| device=torch.device(device), | |
| ), | |
| ] | |
| inputs = { | |
| "prompt": "A painting of a squirrel eating a burger", | |
| "generator": generator, | |
| "num_inference_steps": 2, | |
| "guidance_scale": 6.0, | |
| "output_type": "np", | |
| "image": images, | |
| } | |
| return inputs | |
| def test_control_guidance_switch(self): | |
| components = self.get_dummy_components() | |
| pipe = self.pipeline_class(**components) | |
| pipe.to(torch_device) | |
| scale = 10.0 | |
| steps = 4 | |
| inputs = self.get_dummy_inputs(torch_device) | |
| inputs["num_inference_steps"] = steps | |
| inputs["controlnet_conditioning_scale"] = scale | |
| output_1 = pipe(**inputs)[0] | |
| inputs = self.get_dummy_inputs(torch_device) | |
| inputs["num_inference_steps"] = steps | |
| inputs["controlnet_conditioning_scale"] = scale | |
| output_2 = pipe(**inputs, control_guidance_start=0.1, control_guidance_end=0.2)[0] | |
| inputs = self.get_dummy_inputs(torch_device) | |
| inputs["num_inference_steps"] = steps | |
| inputs["controlnet_conditioning_scale"] = scale | |
| output_3 = pipe(**inputs, control_guidance_start=[0.1, 0.3], control_guidance_end=[0.2, 0.7])[0] | |
| inputs = self.get_dummy_inputs(torch_device) | |
| inputs["num_inference_steps"] = steps | |
| inputs["controlnet_conditioning_scale"] = scale | |
| output_4 = pipe(**inputs, control_guidance_start=0.4, control_guidance_end=[0.5, 0.8])[0] | |
| # make sure that all outputs are different | |
| assert np.sum(np.abs(output_1 - output_2)) > 1e-3 | |
| assert np.sum(np.abs(output_1 - output_3)) > 1e-3 | |
| assert np.sum(np.abs(output_1 - output_4)) > 1e-3 | |
| def test_attention_slicing_forward_pass(self): | |
| return self._test_attention_slicing_forward_pass(expected_max_diff=2e-3) | |
| def test_xformers_attention_forwardGenerator_pass(self): | |
| self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=2e-3) | |
| def test_inference_batch_single_identical(self): | |
| self._test_inference_batch_single_identical(expected_max_diff=2e-3) | |
| def test_ip_adapter(self): | |
| expected_pipe_slice = None | |
| if torch_device == "cpu": | |
| expected_pipe_slice = np.array([0.2422, 0.3425, 0.4048, 0.5351, 0.3503, 0.2419, 0.4645, 0.4570, 0.3804]) | |
| return super().test_ip_adapter(expected_pipe_slice=expected_pipe_slice) | |
| def test_save_pretrained_raise_not_implemented_exception(self): | |
| components = self.get_dummy_components() | |
| pipe = self.pipeline_class(**components) | |
| pipe.to(torch_device) | |
| pipe.set_progress_bar_config(disable=None) | |
| with tempfile.TemporaryDirectory() as tmpdir: | |
| try: | |
| # save_pretrained is not implemented for Multi-ControlNet | |
| pipe.save_pretrained(tmpdir) | |
| except NotImplementedError: | |
| pass | |
| def test_inference_multiple_prompt_input(self): | |
| device = "cpu" | |
| components = self.get_dummy_components() | |
| sd_pipe = StableDiffusionControlNetPipeline(**components) | |
| sd_pipe = sd_pipe.to(torch_device) | |
| sd_pipe.set_progress_bar_config(disable=None) | |
| inputs = self.get_dummy_inputs(device) | |
| inputs["prompt"] = [inputs["prompt"], inputs["prompt"]] | |
| inputs["image"] = [inputs["image"], inputs["image"]] | |
| output = sd_pipe(**inputs) | |
| image = output.images | |
| assert image.shape == (2, 64, 64, 3) | |
| image_1, image_2 = image | |
| # make sure that the outputs are different | |
| assert np.sum(np.abs(image_1 - image_2)) > 1e-3 | |
| # multiple prompts, single image conditioning | |
| inputs = self.get_dummy_inputs(device) | |
| inputs["prompt"] = [inputs["prompt"], inputs["prompt"]] | |
| output_1 = sd_pipe(**inputs) | |
| assert np.abs(image - output_1.images).max() < 1e-3 | |
| # multiple prompts, multiple image conditioning | |
| inputs = self.get_dummy_inputs(device) | |
| inputs["prompt"] = [inputs["prompt"], inputs["prompt"], inputs["prompt"], inputs["prompt"]] | |
| inputs["image"] = [inputs["image"], inputs["image"], inputs["image"], inputs["image"]] | |
| output_2 = sd_pipe(**inputs) | |
| image = output_2.images | |
| assert image.shape == (4, 64, 64, 3) | |
| class StableDiffusionMultiControlNetOneModelPipelineFastTests( | |
| IPAdapterTesterMixin, PipelineTesterMixin, PipelineKarrasSchedulerTesterMixin, unittest.TestCase | |
| ): | |
| pipeline_class = StableDiffusionControlNetPipeline | |
| params = TEXT_TO_IMAGE_PARAMS | |
| batch_params = TEXT_TO_IMAGE_BATCH_PARAMS | |
| image_params = frozenset([]) # TO_DO: add image_params once refactored VaeImageProcessor.preprocess | |
| supports_dduf = False | |
| def get_dummy_components(self): | |
| torch.manual_seed(0) | |
| unet = UNet2DConditionModel( | |
| block_out_channels=(4, 8), | |
| layers_per_block=2, | |
| sample_size=32, | |
| in_channels=4, | |
| out_channels=4, | |
| down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"), | |
| up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"), | |
| cross_attention_dim=32, | |
| norm_num_groups=1, | |
| ) | |
| torch.manual_seed(0) | |
| def init_weights(m): | |
| if isinstance(m, torch.nn.Conv2d): | |
| torch.nn.init.normal_(m.weight) | |
| m.bias.data.fill_(1.0) | |
| controlnet = ControlNetModel( | |
| block_out_channels=(4, 8), | |
| layers_per_block=2, | |
| in_channels=4, | |
| down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"), | |
| cross_attention_dim=32, | |
| conditioning_embedding_out_channels=(16, 32), | |
| norm_num_groups=1, | |
| ) | |
| controlnet.controlnet_down_blocks.apply(init_weights) | |
| torch.manual_seed(0) | |
| scheduler = DDIMScheduler( | |
| beta_start=0.00085, | |
| beta_end=0.012, | |
| beta_schedule="scaled_linear", | |
| clip_sample=False, | |
| set_alpha_to_one=False, | |
| ) | |
| torch.manual_seed(0) | |
| vae = AutoencoderKL( | |
| block_out_channels=[4, 8], | |
| in_channels=3, | |
| out_channels=3, | |
| down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"], | |
| up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"], | |
| latent_channels=4, | |
| norm_num_groups=2, | |
| ) | |
| torch.manual_seed(0) | |
| text_encoder_config = CLIPTextConfig( | |
| bos_token_id=0, | |
| eos_token_id=2, | |
| hidden_size=32, | |
| intermediate_size=37, | |
| layer_norm_eps=1e-05, | |
| num_attention_heads=4, | |
| num_hidden_layers=5, | |
| pad_token_id=1, | |
| vocab_size=1000, | |
| ) | |
| text_encoder = CLIPTextModel(text_encoder_config) | |
| tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip") | |
| controlnet = MultiControlNetModel([controlnet]) | |
| components = { | |
| "unet": unet, | |
| "controlnet": controlnet, | |
| "scheduler": scheduler, | |
| "vae": vae, | |
| "text_encoder": text_encoder, | |
| "tokenizer": tokenizer, | |
| "safety_checker": None, | |
| "feature_extractor": None, | |
| "image_encoder": None, | |
| } | |
| return components | |
| def get_dummy_inputs(self, device, seed=0): | |
| if str(device).startswith("mps"): | |
| generator = torch.manual_seed(seed) | |
| else: | |
| generator = torch.Generator(device=device).manual_seed(seed) | |
| controlnet_embedder_scale_factor = 2 | |
| images = [ | |
| randn_tensor( | |
| (1, 3, 32 * controlnet_embedder_scale_factor, 32 * controlnet_embedder_scale_factor), | |
| generator=generator, | |
| device=torch.device(device), | |
| ), | |
| ] | |
| inputs = { | |
| "prompt": "A painting of a squirrel eating a burger", | |
| "generator": generator, | |
| "num_inference_steps": 2, | |
| "guidance_scale": 6.0, | |
| "output_type": "np", | |
| "image": images, | |
| } | |
| return inputs | |
| def test_control_guidance_switch(self): | |
| components = self.get_dummy_components() | |
| pipe = self.pipeline_class(**components) | |
| pipe.to(torch_device) | |
| scale = 10.0 | |
| steps = 4 | |
| inputs = self.get_dummy_inputs(torch_device) | |
| inputs["num_inference_steps"] = steps | |
| inputs["controlnet_conditioning_scale"] = scale | |
| output_1 = pipe(**inputs)[0] | |
| inputs = self.get_dummy_inputs(torch_device) | |
| inputs["num_inference_steps"] = steps | |
| inputs["controlnet_conditioning_scale"] = scale | |
| output_2 = pipe(**inputs, control_guidance_start=0.1, control_guidance_end=0.2)[0] | |
| inputs = self.get_dummy_inputs(torch_device) | |
| inputs["num_inference_steps"] = steps | |
| inputs["controlnet_conditioning_scale"] = scale | |
| output_3 = pipe( | |
| **inputs, | |
| control_guidance_start=[0.1], | |
| control_guidance_end=[0.2], | |
| )[0] | |
| inputs = self.get_dummy_inputs(torch_device) | |
| inputs["num_inference_steps"] = steps | |
| inputs["controlnet_conditioning_scale"] = scale | |
| output_4 = pipe(**inputs, control_guidance_start=0.4, control_guidance_end=[0.5])[0] | |
| # make sure that all outputs are different | |
| assert np.sum(np.abs(output_1 - output_2)) > 1e-3 | |
| assert np.sum(np.abs(output_1 - output_3)) > 1e-3 | |
| assert np.sum(np.abs(output_1 - output_4)) > 1e-3 | |
| def test_attention_slicing_forward_pass(self): | |
| return self._test_attention_slicing_forward_pass(expected_max_diff=2e-3) | |
| def test_xformers_attention_forwardGenerator_pass(self): | |
| self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=2e-3) | |
| def test_inference_batch_single_identical(self): | |
| self._test_inference_batch_single_identical(expected_max_diff=2e-3) | |
| def test_ip_adapter(self): | |
| expected_pipe_slice = None | |
| if torch_device == "cpu": | |
| expected_pipe_slice = np.array([0.5264, 0.3203, 0.1602, 0.8235, 0.6332, 0.4593, 0.7226, 0.7777, 0.4780]) | |
| return super().test_ip_adapter(expected_pipe_slice=expected_pipe_slice) | |
| def test_save_pretrained_raise_not_implemented_exception(self): | |
| components = self.get_dummy_components() | |
| pipe = self.pipeline_class(**components) | |
| pipe.to(torch_device) | |
| pipe.set_progress_bar_config(disable=None) | |
| with tempfile.TemporaryDirectory() as tmpdir: | |
| try: | |
| # save_pretrained is not implemented for Multi-ControlNet | |
| pipe.save_pretrained(tmpdir) | |
| except NotImplementedError: | |
| pass | |
| class ControlNetPipelineSlowTests(unittest.TestCase): | |
| def setUp(self): | |
| super().setUp() | |
| gc.collect() | |
| backend_empty_cache(torch_device) | |
| def tearDown(self): | |
| super().tearDown() | |
| gc.collect() | |
| backend_empty_cache(torch_device) | |
| def test_canny(self): | |
| controlnet = ControlNetModel.from_pretrained("lllyasviel/sd-controlnet-canny") | |
| pipe = StableDiffusionControlNetPipeline.from_pretrained( | |
| "stable-diffusion-v1-5/stable-diffusion-v1-5", safety_checker=None, controlnet=controlnet | |
| ) | |
| pipe.enable_model_cpu_offload(device=torch_device) | |
| pipe.set_progress_bar_config(disable=None) | |
| generator = torch.Generator(device="cpu").manual_seed(0) | |
| prompt = "bird" | |
| image = load_image( | |
| "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/bird_canny.png" | |
| ) | |
| output = pipe(prompt, image, generator=generator, output_type="np", num_inference_steps=3) | |
| image = output.images[0] | |
| assert image.shape == (768, 512, 3) | |
| expected_image = load_numpy( | |
| "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/bird_canny_out.npy" | |
| ) | |
| assert np.abs(expected_image - image).max() < 9e-2 | |
| def test_depth(self): | |
| controlnet = ControlNetModel.from_pretrained("lllyasviel/sd-controlnet-depth") | |
| pipe = StableDiffusionControlNetPipeline.from_pretrained( | |
| "stable-diffusion-v1-5/stable-diffusion-v1-5", safety_checker=None, controlnet=controlnet | |
| ) | |
| pipe.enable_model_cpu_offload(device=torch_device) | |
| pipe.set_progress_bar_config(disable=None) | |
| generator = torch.Generator(device="cpu").manual_seed(0) | |
| prompt = "Stormtrooper's lecture" | |
| image = load_image( | |
| "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/stormtrooper_depth.png" | |
| ) | |
| output = pipe(prompt, image, generator=generator, output_type="np", num_inference_steps=3) | |
| image = output.images[0] | |
| assert image.shape == (512, 512, 3) | |
| expected_image = load_numpy( | |
| "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/stormtrooper_depth_out.npy" | |
| ) | |
| assert np.abs(expected_image - image).max() < 8e-1 | |
| def test_hed(self): | |
| controlnet = ControlNetModel.from_pretrained("lllyasviel/sd-controlnet-hed") | |
| pipe = StableDiffusionControlNetPipeline.from_pretrained( | |
| "stable-diffusion-v1-5/stable-diffusion-v1-5", safety_checker=None, controlnet=controlnet | |
| ) | |
| pipe.enable_model_cpu_offload(device=torch_device) | |
| pipe.set_progress_bar_config(disable=None) | |
| generator = torch.Generator(device="cpu").manual_seed(0) | |
| prompt = "oil painting of handsome old man, masterpiece" | |
| image = load_image( | |
| "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/man_hed.png" | |
| ) | |
| output = pipe(prompt, image, generator=generator, output_type="np", num_inference_steps=3) | |
| image = output.images[0] | |
| assert image.shape == (704, 512, 3) | |
| expected_image = load_numpy( | |
| "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/man_hed_out.npy" | |
| ) | |
| assert np.abs(expected_image - image).max() < 8e-2 | |
| def test_mlsd(self): | |
| controlnet = ControlNetModel.from_pretrained("lllyasviel/sd-controlnet-mlsd") | |
| pipe = StableDiffusionControlNetPipeline.from_pretrained( | |
| "stable-diffusion-v1-5/stable-diffusion-v1-5", safety_checker=None, controlnet=controlnet | |
| ) | |
| pipe.enable_model_cpu_offload(device=torch_device) | |
| pipe.set_progress_bar_config(disable=None) | |
| generator = torch.Generator(device="cpu").manual_seed(0) | |
| prompt = "room" | |
| image = load_image( | |
| "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/room_mlsd.png" | |
| ) | |
| output = pipe(prompt, image, generator=generator, output_type="np", num_inference_steps=3) | |
| image = output.images[0] | |
| assert image.shape == (704, 512, 3) | |
| expected_image = load_numpy( | |
| "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/room_mlsd_out.npy" | |
| ) | |
| assert np.abs(expected_image - image).max() < 5e-2 | |
| def test_normal(self): | |
| controlnet = ControlNetModel.from_pretrained("lllyasviel/sd-controlnet-normal") | |
| pipe = StableDiffusionControlNetPipeline.from_pretrained( | |
| "stable-diffusion-v1-5/stable-diffusion-v1-5", safety_checker=None, controlnet=controlnet | |
| ) | |
| pipe.enable_model_cpu_offload(device=torch_device) | |
| pipe.set_progress_bar_config(disable=None) | |
| generator = torch.Generator(device="cpu").manual_seed(0) | |
| prompt = "cute toy" | |
| image = load_image( | |
| "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/cute_toy_normal.png" | |
| ) | |
| output = pipe(prompt, image, generator=generator, output_type="np", num_inference_steps=3) | |
| image = output.images[0] | |
| assert image.shape == (512, 512, 3) | |
| expected_image = load_numpy( | |
| "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/cute_toy_normal_out.npy" | |
| ) | |
| assert np.abs(expected_image - image).max() < 5e-2 | |
| def test_openpose(self): | |
| controlnet = ControlNetModel.from_pretrained("lllyasviel/sd-controlnet-openpose") | |
| pipe = StableDiffusionControlNetPipeline.from_pretrained( | |
| "stable-diffusion-v1-5/stable-diffusion-v1-5", safety_checker=None, controlnet=controlnet | |
| ) | |
| pipe.enable_model_cpu_offload(device=torch_device) | |
| pipe.set_progress_bar_config(disable=None) | |
| generator = torch.Generator(device="cpu").manual_seed(0) | |
| prompt = "Chef in the kitchen" | |
| image = load_image( | |
| "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/pose.png" | |
| ) | |
| output = pipe(prompt, image, generator=generator, output_type="np", num_inference_steps=3) | |
| image = output.images[0] | |
| assert image.shape == (768, 512, 3) | |
| expected_image = load_numpy( | |
| "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/chef_pose_out.npy" | |
| ) | |
| assert np.abs(expected_image - image).max() < 8e-2 | |
| def test_scribble(self): | |
| controlnet = ControlNetModel.from_pretrained("lllyasviel/sd-controlnet-scribble") | |
| pipe = StableDiffusionControlNetPipeline.from_pretrained( | |
| "stable-diffusion-v1-5/stable-diffusion-v1-5", safety_checker=None, controlnet=controlnet | |
| ) | |
| pipe.enable_model_cpu_offload(device=torch_device) | |
| pipe.set_progress_bar_config(disable=None) | |
| generator = torch.Generator(device="cpu").manual_seed(5) | |
| prompt = "bag" | |
| image = load_image( | |
| "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/bag_scribble.png" | |
| ) | |
| output = pipe(prompt, image, generator=generator, output_type="np", num_inference_steps=3) | |
| image = output.images[0] | |
| assert image.shape == (640, 512, 3) | |
| expected_image = load_numpy( | |
| "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/bag_scribble_out.npy" | |
| ) | |
| assert np.abs(expected_image - image).max() < 8e-2 | |
| def test_seg(self): | |
| controlnet = ControlNetModel.from_pretrained("lllyasviel/sd-controlnet-seg") | |
| pipe = StableDiffusionControlNetPipeline.from_pretrained( | |
| "stable-diffusion-v1-5/stable-diffusion-v1-5", safety_checker=None, controlnet=controlnet | |
| ) | |
| pipe.enable_model_cpu_offload(device=torch_device) | |
| pipe.set_progress_bar_config(disable=None) | |
| generator = torch.Generator(device="cpu").manual_seed(5) | |
| prompt = "house" | |
| image = load_image( | |
| "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/house_seg.png" | |
| ) | |
| output = pipe(prompt, image, generator=generator, output_type="np", num_inference_steps=3) | |
| image = output.images[0] | |
| assert image.shape == (512, 512, 3) | |
| expected_image = load_numpy( | |
| "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/house_seg_out.npy" | |
| ) | |
| assert np.abs(expected_image - image).max() < 8e-2 | |
| def test_sequential_cpu_offloading(self): | |
| backend_empty_cache(torch_device) | |
| backend_reset_max_memory_allocated(torch_device) | |
| backend_reset_peak_memory_stats(torch_device) | |
| controlnet = ControlNetModel.from_pretrained("lllyasviel/sd-controlnet-seg") | |
| pipe = StableDiffusionControlNetPipeline.from_pretrained( | |
| "stable-diffusion-v1-5/stable-diffusion-v1-5", safety_checker=None, controlnet=controlnet | |
| ) | |
| pipe.set_progress_bar_config(disable=None) | |
| pipe.enable_attention_slicing() | |
| pipe.enable_sequential_cpu_offload(device=torch_device) | |
| prompt = "house" | |
| image = load_image( | |
| "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/house_seg.png" | |
| ) | |
| _ = pipe( | |
| prompt, | |
| image, | |
| num_inference_steps=2, | |
| output_type="np", | |
| ) | |
| mem_bytes = backend_max_memory_allocated(torch_device) | |
| # make sure that less than 7 GB is allocated | |
| assert mem_bytes < 4 * 10**9 | |
| def test_canny_guess_mode(self): | |
| controlnet = ControlNetModel.from_pretrained("lllyasviel/sd-controlnet-canny") | |
| pipe = StableDiffusionControlNetPipeline.from_pretrained( | |
| "stable-diffusion-v1-5/stable-diffusion-v1-5", safety_checker=None, controlnet=controlnet | |
| ) | |
| pipe.enable_model_cpu_offload(device=torch_device) | |
| pipe.set_progress_bar_config(disable=None) | |
| generator = torch.Generator(device="cpu").manual_seed(0) | |
| prompt = "" | |
| image = load_image( | |
| "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/bird_canny.png" | |
| ) | |
| output = pipe( | |
| prompt, | |
| image, | |
| generator=generator, | |
| output_type="np", | |
| num_inference_steps=3, | |
| guidance_scale=3.0, | |
| guess_mode=True, | |
| ) | |
| image = output.images[0] | |
| assert image.shape == (768, 512, 3) | |
| image_slice = image[-3:, -3:, -1] | |
| expected_slice = np.array([0.2724, 0.2846, 0.2724, 0.3843, 0.3682, 0.2736, 0.4675, 0.3862, 0.2887]) | |
| assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 | |
| def test_canny_guess_mode_euler(self): | |
| controlnet = ControlNetModel.from_pretrained("lllyasviel/sd-controlnet-canny") | |
| pipe = StableDiffusionControlNetPipeline.from_pretrained( | |
| "stable-diffusion-v1-5/stable-diffusion-v1-5", safety_checker=None, controlnet=controlnet | |
| ) | |
| pipe.scheduler = EulerDiscreteScheduler.from_config(pipe.scheduler.config) | |
| pipe.enable_model_cpu_offload(device=torch_device) | |
| pipe.set_progress_bar_config(disable=None) | |
| generator = torch.Generator(device="cpu").manual_seed(0) | |
| prompt = "" | |
| image = load_image( | |
| "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/bird_canny.png" | |
| ) | |
| output = pipe( | |
| prompt, | |
| image, | |
| generator=generator, | |
| output_type="np", | |
| num_inference_steps=3, | |
| guidance_scale=3.0, | |
| guess_mode=True, | |
| ) | |
| image = output.images[0] | |
| assert image.shape == (768, 512, 3) | |
| image_slice = image[-3:, -3:, -1] | |
| expected_slice = np.array([0.1655, 0.1721, 0.1623, 0.1685, 0.1711, 0.1646, 0.1651, 0.1631, 0.1494]) | |
| assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 | |
| def test_stable_diffusion_compile(self): | |
| run_test_in_subprocess(test_case=self, target_func=_test_stable_diffusion_compile, inputs=None) | |
| def test_v11_shuffle_global_pool_conditions(self): | |
| controlnet = ControlNetModel.from_pretrained("lllyasviel/control_v11e_sd15_shuffle") | |
| pipe = StableDiffusionControlNetPipeline.from_pretrained( | |
| "stable-diffusion-v1-5/stable-diffusion-v1-5", safety_checker=None, controlnet=controlnet | |
| ) | |
| pipe.enable_model_cpu_offload(device=torch_device) | |
| pipe.set_progress_bar_config(disable=None) | |
| generator = torch.Generator(device="cpu").manual_seed(0) | |
| prompt = "New York" | |
| image = load_image( | |
| "https://huggingface.co/lllyasviel/control_v11e_sd15_shuffle/resolve/main/images/control.png" | |
| ) | |
| output = pipe( | |
| prompt, | |
| image, | |
| generator=generator, | |
| output_type="np", | |
| num_inference_steps=3, | |
| guidance_scale=7.0, | |
| ) | |
| image = output.images[0] | |
| assert image.shape == (512, 640, 3) | |
| image_slice = image[-3:, -3:, -1] | |
| expected_slice = np.array([0.1338, 0.1597, 0.1202, 0.1687, 0.1377, 0.1017, 0.2070, 0.1574, 0.1348]) | |
| assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 | |
| class StableDiffusionMultiControlNetPipelineSlowTests(unittest.TestCase): | |
| def setUp(self): | |
| super().setUp() | |
| gc.collect() | |
| backend_empty_cache(torch_device) | |
| def tearDown(self): | |
| super().tearDown() | |
| gc.collect() | |
| backend_empty_cache(torch_device) | |
| def test_pose_and_canny(self): | |
| controlnet_canny = ControlNetModel.from_pretrained("lllyasviel/sd-controlnet-canny") | |
| controlnet_pose = ControlNetModel.from_pretrained("lllyasviel/sd-controlnet-openpose") | |
| pipe = StableDiffusionControlNetPipeline.from_pretrained( | |
| "stable-diffusion-v1-5/stable-diffusion-v1-5", | |
| safety_checker=None, | |
| controlnet=[controlnet_pose, controlnet_canny], | |
| ) | |
| pipe.enable_model_cpu_offload(device=torch_device) | |
| pipe.set_progress_bar_config(disable=None) | |
| generator = torch.Generator(device="cpu").manual_seed(0) | |
| prompt = "bird and Chef" | |
| image_canny = load_image( | |
| "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/bird_canny.png" | |
| ) | |
| image_pose = load_image( | |
| "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/pose.png" | |
| ) | |
| output = pipe(prompt, [image_pose, image_canny], generator=generator, output_type="np", num_inference_steps=3) | |
| image = output.images[0] | |
| assert image.shape == (768, 512, 3) | |
| expected_image = load_numpy( | |
| "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/pose_canny_out.npy" | |
| ) | |
| assert np.abs(expected_image - image).max() < 5e-2 | |