Spaces:
Running
on
Zero
Running
on
Zero
| # coding=utf-8 | |
| # Copyright 2024 HuggingFace Inc. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| # This model implementation is heavily based on: | |
| import gc | |
| import random | |
| import tempfile | |
| import unittest | |
| import numpy as np | |
| import torch | |
| from PIL import Image | |
| from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer | |
| from diffusers import ( | |
| AutoencoderKL, | |
| ControlNetModel, | |
| DDIMScheduler, | |
| StableDiffusionControlNetInpaintPipeline, | |
| UNet2DConditionModel, | |
| ) | |
| from diffusers.pipelines.controlnet.pipeline_controlnet import MultiControlNetModel | |
| from diffusers.utils import load_image | |
| from diffusers.utils.import_utils import is_xformers_available | |
| from diffusers.utils.testing_utils import ( | |
| enable_full_determinism, | |
| floats_tensor, | |
| load_numpy, | |
| numpy_cosine_similarity_distance, | |
| require_torch_accelerator, | |
| slow, | |
| torch_device, | |
| ) | |
| from diffusers.utils.torch_utils import randn_tensor | |
| from ..pipeline_params import ( | |
| TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, | |
| TEXT_GUIDED_IMAGE_INPAINTING_PARAMS, | |
| TEXT_TO_IMAGE_IMAGE_PARAMS, | |
| ) | |
| from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin | |
| enable_full_determinism() | |
| class ControlNetInpaintPipelineFastTests( | |
| PipelineLatentTesterMixin, PipelineKarrasSchedulerTesterMixin, PipelineTesterMixin, unittest.TestCase | |
| ): | |
| pipeline_class = StableDiffusionControlNetInpaintPipeline | |
| params = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS | |
| batch_params = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS | |
| image_params = frozenset({"control_image"}) # skip `image` and `mask` for now, only test for control_image | |
| image_latents_params = TEXT_TO_IMAGE_IMAGE_PARAMS | |
| def get_dummy_components(self): | |
| torch.manual_seed(0) | |
| unet = UNet2DConditionModel( | |
| block_out_channels=(32, 64), | |
| layers_per_block=2, | |
| sample_size=32, | |
| in_channels=9, | |
| out_channels=4, | |
| down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"), | |
| up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"), | |
| cross_attention_dim=32, | |
| ) | |
| torch.manual_seed(0) | |
| controlnet = ControlNetModel( | |
| block_out_channels=(32, 64), | |
| layers_per_block=2, | |
| in_channels=4, | |
| down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"), | |
| cross_attention_dim=32, | |
| conditioning_embedding_out_channels=(16, 32), | |
| ) | |
| torch.manual_seed(0) | |
| scheduler = DDIMScheduler( | |
| beta_start=0.00085, | |
| beta_end=0.012, | |
| beta_schedule="scaled_linear", | |
| clip_sample=False, | |
| set_alpha_to_one=False, | |
| ) | |
| torch.manual_seed(0) | |
| vae = AutoencoderKL( | |
| block_out_channels=[32, 64], | |
| in_channels=3, | |
| out_channels=3, | |
| down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"], | |
| up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"], | |
| latent_channels=4, | |
| ) | |
| torch.manual_seed(0) | |
| text_encoder_config = CLIPTextConfig( | |
| bos_token_id=0, | |
| eos_token_id=2, | |
| hidden_size=32, | |
| intermediate_size=37, | |
| layer_norm_eps=1e-05, | |
| num_attention_heads=4, | |
| num_hidden_layers=5, | |
| pad_token_id=1, | |
| vocab_size=1000, | |
| ) | |
| text_encoder = CLIPTextModel(text_encoder_config) | |
| tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip") | |
| components = { | |
| "unet": unet, | |
| "controlnet": controlnet, | |
| "scheduler": scheduler, | |
| "vae": vae, | |
| "text_encoder": text_encoder, | |
| "tokenizer": tokenizer, | |
| "safety_checker": None, | |
| "feature_extractor": None, | |
| "image_encoder": None, | |
| } | |
| return components | |
| def get_dummy_inputs(self, device, seed=0): | |
| if str(device).startswith("mps"): | |
| generator = torch.manual_seed(seed) | |
| else: | |
| generator = torch.Generator(device=device).manual_seed(seed) | |
| controlnet_embedder_scale_factor = 2 | |
| control_image = randn_tensor( | |
| (1, 3, 32 * controlnet_embedder_scale_factor, 32 * controlnet_embedder_scale_factor), | |
| generator=generator, | |
| device=torch.device(device), | |
| ) | |
| init_image = floats_tensor((1, 3, 32, 32), rng=random.Random(seed)).to(device) | |
| init_image = init_image.cpu().permute(0, 2, 3, 1)[0] | |
| image = Image.fromarray(np.uint8(init_image)).convert("RGB").resize((64, 64)) | |
| mask_image = Image.fromarray(np.uint8(init_image + 4)).convert("RGB").resize((64, 64)) | |
| inputs = { | |
| "prompt": "A painting of a squirrel eating a burger", | |
| "generator": generator, | |
| "num_inference_steps": 2, | |
| "guidance_scale": 6.0, | |
| "output_type": "np", | |
| "image": image, | |
| "mask_image": mask_image, | |
| "control_image": control_image, | |
| } | |
| return inputs | |
| def test_attention_slicing_forward_pass(self): | |
| return self._test_attention_slicing_forward_pass(expected_max_diff=2e-3) | |
| def test_xformers_attention_forwardGenerator_pass(self): | |
| self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=2e-3) | |
| def test_inference_batch_single_identical(self): | |
| self._test_inference_batch_single_identical(expected_max_diff=2e-3) | |
| class ControlNetSimpleInpaintPipelineFastTests(ControlNetInpaintPipelineFastTests): | |
| pipeline_class = StableDiffusionControlNetInpaintPipeline | |
| params = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS | |
| batch_params = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS | |
| image_params = frozenset([]) | |
| def get_dummy_components(self): | |
| torch.manual_seed(0) | |
| unet = UNet2DConditionModel( | |
| block_out_channels=(32, 64), | |
| layers_per_block=2, | |
| sample_size=32, | |
| in_channels=4, | |
| out_channels=4, | |
| down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"), | |
| up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"), | |
| cross_attention_dim=32, | |
| ) | |
| torch.manual_seed(0) | |
| controlnet = ControlNetModel( | |
| block_out_channels=(32, 64), | |
| layers_per_block=2, | |
| in_channels=4, | |
| down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"), | |
| cross_attention_dim=32, | |
| conditioning_embedding_out_channels=(16, 32), | |
| ) | |
| torch.manual_seed(0) | |
| scheduler = DDIMScheduler( | |
| beta_start=0.00085, | |
| beta_end=0.012, | |
| beta_schedule="scaled_linear", | |
| clip_sample=False, | |
| set_alpha_to_one=False, | |
| ) | |
| torch.manual_seed(0) | |
| vae = AutoencoderKL( | |
| block_out_channels=[32, 64], | |
| in_channels=3, | |
| out_channels=3, | |
| down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"], | |
| up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"], | |
| latent_channels=4, | |
| ) | |
| torch.manual_seed(0) | |
| text_encoder_config = CLIPTextConfig( | |
| bos_token_id=0, | |
| eos_token_id=2, | |
| hidden_size=32, | |
| intermediate_size=37, | |
| layer_norm_eps=1e-05, | |
| num_attention_heads=4, | |
| num_hidden_layers=5, | |
| pad_token_id=1, | |
| vocab_size=1000, | |
| ) | |
| text_encoder = CLIPTextModel(text_encoder_config) | |
| tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip") | |
| components = { | |
| "unet": unet, | |
| "controlnet": controlnet, | |
| "scheduler": scheduler, | |
| "vae": vae, | |
| "text_encoder": text_encoder, | |
| "tokenizer": tokenizer, | |
| "safety_checker": None, | |
| "feature_extractor": None, | |
| "image_encoder": None, | |
| } | |
| return components | |
| class MultiControlNetInpaintPipelineFastTests( | |
| PipelineTesterMixin, PipelineKarrasSchedulerTesterMixin, unittest.TestCase | |
| ): | |
| pipeline_class = StableDiffusionControlNetInpaintPipeline | |
| params = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS | |
| batch_params = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS | |
| supports_dduf = False | |
| def get_dummy_components(self): | |
| torch.manual_seed(0) | |
| unet = UNet2DConditionModel( | |
| block_out_channels=(32, 64), | |
| layers_per_block=2, | |
| sample_size=32, | |
| in_channels=9, | |
| out_channels=4, | |
| down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"), | |
| up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"), | |
| cross_attention_dim=32, | |
| ) | |
| torch.manual_seed(0) | |
| def init_weights(m): | |
| if isinstance(m, torch.nn.Conv2d): | |
| torch.nn.init.normal_(m.weight) | |
| m.bias.data.fill_(1.0) | |
| controlnet1 = ControlNetModel( | |
| block_out_channels=(32, 64), | |
| layers_per_block=2, | |
| in_channels=4, | |
| down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"), | |
| cross_attention_dim=32, | |
| conditioning_embedding_out_channels=(16, 32), | |
| ) | |
| controlnet1.controlnet_down_blocks.apply(init_weights) | |
| torch.manual_seed(0) | |
| controlnet2 = ControlNetModel( | |
| block_out_channels=(32, 64), | |
| layers_per_block=2, | |
| in_channels=4, | |
| down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"), | |
| cross_attention_dim=32, | |
| conditioning_embedding_out_channels=(16, 32), | |
| ) | |
| controlnet2.controlnet_down_blocks.apply(init_weights) | |
| torch.manual_seed(0) | |
| scheduler = DDIMScheduler( | |
| beta_start=0.00085, | |
| beta_end=0.012, | |
| beta_schedule="scaled_linear", | |
| clip_sample=False, | |
| set_alpha_to_one=False, | |
| ) | |
| torch.manual_seed(0) | |
| vae = AutoencoderKL( | |
| block_out_channels=[32, 64], | |
| in_channels=3, | |
| out_channels=3, | |
| down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"], | |
| up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"], | |
| latent_channels=4, | |
| ) | |
| torch.manual_seed(0) | |
| text_encoder_config = CLIPTextConfig( | |
| bos_token_id=0, | |
| eos_token_id=2, | |
| hidden_size=32, | |
| intermediate_size=37, | |
| layer_norm_eps=1e-05, | |
| num_attention_heads=4, | |
| num_hidden_layers=5, | |
| pad_token_id=1, | |
| vocab_size=1000, | |
| ) | |
| text_encoder = CLIPTextModel(text_encoder_config) | |
| tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip") | |
| controlnet = MultiControlNetModel([controlnet1, controlnet2]) | |
| components = { | |
| "unet": unet, | |
| "controlnet": controlnet, | |
| "scheduler": scheduler, | |
| "vae": vae, | |
| "text_encoder": text_encoder, | |
| "tokenizer": tokenizer, | |
| "safety_checker": None, | |
| "feature_extractor": None, | |
| "image_encoder": None, | |
| } | |
| return components | |
| def get_dummy_inputs(self, device, seed=0): | |
| if str(device).startswith("mps"): | |
| generator = torch.manual_seed(seed) | |
| else: | |
| generator = torch.Generator(device=device).manual_seed(seed) | |
| controlnet_embedder_scale_factor = 2 | |
| control_image = [ | |
| randn_tensor( | |
| (1, 3, 32 * controlnet_embedder_scale_factor, 32 * controlnet_embedder_scale_factor), | |
| generator=generator, | |
| device=torch.device(device), | |
| ), | |
| randn_tensor( | |
| (1, 3, 32 * controlnet_embedder_scale_factor, 32 * controlnet_embedder_scale_factor), | |
| generator=generator, | |
| device=torch.device(device), | |
| ), | |
| ] | |
| init_image = floats_tensor((1, 3, 32, 32), rng=random.Random(seed)).to(device) | |
| init_image = init_image.cpu().permute(0, 2, 3, 1)[0] | |
| image = Image.fromarray(np.uint8(init_image)).convert("RGB").resize((64, 64)) | |
| mask_image = Image.fromarray(np.uint8(init_image + 4)).convert("RGB").resize((64, 64)) | |
| inputs = { | |
| "prompt": "A painting of a squirrel eating a burger", | |
| "generator": generator, | |
| "num_inference_steps": 2, | |
| "guidance_scale": 6.0, | |
| "output_type": "np", | |
| "image": image, | |
| "mask_image": mask_image, | |
| "control_image": control_image, | |
| } | |
| return inputs | |
| def test_control_guidance_switch(self): | |
| components = self.get_dummy_components() | |
| pipe = self.pipeline_class(**components) | |
| pipe.to(torch_device) | |
| scale = 10.0 | |
| steps = 4 | |
| inputs = self.get_dummy_inputs(torch_device) | |
| inputs["num_inference_steps"] = steps | |
| inputs["controlnet_conditioning_scale"] = scale | |
| output_1 = pipe(**inputs)[0] | |
| inputs = self.get_dummy_inputs(torch_device) | |
| inputs["num_inference_steps"] = steps | |
| inputs["controlnet_conditioning_scale"] = scale | |
| output_2 = pipe(**inputs, control_guidance_start=0.1, control_guidance_end=0.2)[0] | |
| inputs = self.get_dummy_inputs(torch_device) | |
| inputs["num_inference_steps"] = steps | |
| inputs["controlnet_conditioning_scale"] = scale | |
| output_3 = pipe(**inputs, control_guidance_start=[0.1, 0.3], control_guidance_end=[0.2, 0.7])[0] | |
| inputs = self.get_dummy_inputs(torch_device) | |
| inputs["num_inference_steps"] = steps | |
| inputs["controlnet_conditioning_scale"] = scale | |
| output_4 = pipe(**inputs, control_guidance_start=0.4, control_guidance_end=[0.5, 0.8])[0] | |
| # make sure that all outputs are different | |
| assert np.sum(np.abs(output_1 - output_2)) > 1e-3 | |
| assert np.sum(np.abs(output_1 - output_3)) > 1e-3 | |
| assert np.sum(np.abs(output_1 - output_4)) > 1e-3 | |
| def test_attention_slicing_forward_pass(self): | |
| return self._test_attention_slicing_forward_pass(expected_max_diff=2e-3) | |
| def test_xformers_attention_forwardGenerator_pass(self): | |
| self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=2e-3) | |
| def test_inference_batch_single_identical(self): | |
| self._test_inference_batch_single_identical(expected_max_diff=2e-3) | |
| def test_save_pretrained_raise_not_implemented_exception(self): | |
| components = self.get_dummy_components() | |
| pipe = self.pipeline_class(**components) | |
| pipe.to(torch_device) | |
| pipe.set_progress_bar_config(disable=None) | |
| with tempfile.TemporaryDirectory() as tmpdir: | |
| try: | |
| # save_pretrained is not implemented for Multi-ControlNet | |
| pipe.save_pretrained(tmpdir) | |
| except NotImplementedError: | |
| pass | |
| class ControlNetInpaintPipelineSlowTests(unittest.TestCase): | |
| def setUp(self): | |
| super().setUp() | |
| gc.collect() | |
| torch.cuda.empty_cache() | |
| def tearDown(self): | |
| super().tearDown() | |
| gc.collect() | |
| torch.cuda.empty_cache() | |
| def test_canny(self): | |
| controlnet = ControlNetModel.from_pretrained("lllyasviel/sd-controlnet-canny") | |
| pipe = StableDiffusionControlNetInpaintPipeline.from_pretrained( | |
| "botp/stable-diffusion-v1-5-inpainting", safety_checker=None, controlnet=controlnet | |
| ) | |
| pipe.enable_model_cpu_offload(device=torch_device) | |
| pipe.set_progress_bar_config(disable=None) | |
| generator = torch.Generator(device="cpu").manual_seed(0) | |
| image = load_image( | |
| "https://huggingface.co/lllyasviel/sd-controlnet-canny/resolve/main/images/bird.png" | |
| ).resize((512, 512)) | |
| mask_image = load_image( | |
| "https://huggingface.co/datasets/diffusers/test-arrays/resolve/main" | |
| "/stable_diffusion_inpaint/input_bench_mask.png" | |
| ).resize((512, 512)) | |
| prompt = "pitch black hole" | |
| control_image = load_image( | |
| "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/bird_canny.png" | |
| ).resize((512, 512)) | |
| output = pipe( | |
| prompt, | |
| image=image, | |
| mask_image=mask_image, | |
| control_image=control_image, | |
| generator=generator, | |
| output_type="np", | |
| num_inference_steps=3, | |
| ) | |
| image = output.images[0] | |
| assert image.shape == (512, 512, 3) | |
| expected_image = load_numpy( | |
| "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/inpaint.npy" | |
| ) | |
| assert np.abs(expected_image - image).max() < 9e-2 | |
| def test_inpaint(self): | |
| controlnet = ControlNetModel.from_pretrained("lllyasviel/control_v11p_sd15_inpaint") | |
| pipe = StableDiffusionControlNetInpaintPipeline.from_pretrained( | |
| "stable-diffusion-v1-5/stable-diffusion-v1-5", safety_checker=None, controlnet=controlnet | |
| ) | |
| pipe.scheduler = DDIMScheduler.from_config(pipe.scheduler.config) | |
| pipe.enable_model_cpu_offload(device=torch_device) | |
| pipe.set_progress_bar_config(disable=None) | |
| generator = torch.Generator(device="cpu").manual_seed(33) | |
| init_image = load_image( | |
| "https://huggingface.co/datasets/diffusers/test-arrays/resolve/main/stable_diffusion_inpaint/boy.png" | |
| ) | |
| init_image = init_image.resize((512, 512)) | |
| mask_image = load_image( | |
| "https://huggingface.co/datasets/diffusers/test-arrays/resolve/main/stable_diffusion_inpaint/boy_mask.png" | |
| ) | |
| mask_image = mask_image.resize((512, 512)) | |
| prompt = "a handsome man with ray-ban sunglasses" | |
| def make_inpaint_condition(image, image_mask): | |
| image = np.array(image.convert("RGB")).astype(np.float32) / 255.0 | |
| image_mask = np.array(image_mask.convert("L")).astype(np.float32) / 255.0 | |
| assert image.shape[0:1] == image_mask.shape[0:1], "image and image_mask must have the same image size" | |
| image[image_mask > 0.5] = -1.0 # set as masked pixel | |
| image = np.expand_dims(image, 0).transpose(0, 3, 1, 2) | |
| image = torch.from_numpy(image) | |
| return image | |
| control_image = make_inpaint_condition(init_image, mask_image) | |
| output = pipe( | |
| prompt, | |
| image=init_image, | |
| mask_image=mask_image, | |
| control_image=control_image, | |
| guidance_scale=9.0, | |
| eta=1.0, | |
| generator=generator, | |
| num_inference_steps=20, | |
| output_type="np", | |
| ) | |
| image = output.images[0] | |
| assert image.shape == (512, 512, 3) | |
| expected_image = load_numpy( | |
| "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/boy_ray_ban.npy" | |
| ) | |
| assert numpy_cosine_similarity_distance(expected_image.flatten(), image.flatten()) < 1e-2 | |