Spaces:
Running
on
Zero
Running
on
Zero
| # coding=utf-8 | |
| # Copyright 2024 HuggingFace Inc. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| import gc | |
| import unittest | |
| from diffusers import FlaxControlNetModel, FlaxStableDiffusionControlNetPipeline | |
| from diffusers.utils import is_flax_available, load_image | |
| from diffusers.utils.testing_utils import require_flax, slow | |
| if is_flax_available(): | |
| import jax | |
| import jax.numpy as jnp | |
| from flax.jax_utils import replicate | |
| from flax.training.common_utils import shard | |
| class FlaxControlNetPipelineIntegrationTests(unittest.TestCase): | |
| def tearDown(self): | |
| # clean up the VRAM after each test | |
| super().tearDown() | |
| gc.collect() | |
| def test_canny(self): | |
| controlnet, controlnet_params = FlaxControlNetModel.from_pretrained( | |
| "lllyasviel/sd-controlnet-canny", from_pt=True, dtype=jnp.bfloat16 | |
| ) | |
| pipe, params = FlaxStableDiffusionControlNetPipeline.from_pretrained( | |
| "stable-diffusion-v1-5/stable-diffusion-v1-5", controlnet=controlnet, from_pt=True, dtype=jnp.bfloat16 | |
| ) | |
| params["controlnet"] = controlnet_params | |
| prompts = "bird" | |
| num_samples = jax.device_count() | |
| prompt_ids = pipe.prepare_text_inputs([prompts] * num_samples) | |
| canny_image = load_image( | |
| "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/bird_canny.png" | |
| ) | |
| processed_image = pipe.prepare_image_inputs([canny_image] * num_samples) | |
| rng = jax.random.PRNGKey(0) | |
| rng = jax.random.split(rng, jax.device_count()) | |
| p_params = replicate(params) | |
| prompt_ids = shard(prompt_ids) | |
| processed_image = shard(processed_image) | |
| images = pipe( | |
| prompt_ids=prompt_ids, | |
| image=processed_image, | |
| params=p_params, | |
| prng_seed=rng, | |
| num_inference_steps=50, | |
| jit=True, | |
| ).images | |
| assert images.shape == (jax.device_count(), 1, 768, 512, 3) | |
| images = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:]) | |
| image_slice = images[0, 253:256, 253:256, -1] | |
| output_slice = jnp.asarray(jax.device_get(image_slice.flatten())) | |
| expected_slice = jnp.array( | |
| [0.167969, 0.116699, 0.081543, 0.154297, 0.132812, 0.108887, 0.169922, 0.169922, 0.205078] | |
| ) | |
| assert jnp.abs(output_slice - expected_slice).max() < 1e-2 | |
| def test_pose(self): | |
| controlnet, controlnet_params = FlaxControlNetModel.from_pretrained( | |
| "lllyasviel/sd-controlnet-openpose", from_pt=True, dtype=jnp.bfloat16 | |
| ) | |
| pipe, params = FlaxStableDiffusionControlNetPipeline.from_pretrained( | |
| "stable-diffusion-v1-5/stable-diffusion-v1-5", controlnet=controlnet, from_pt=True, dtype=jnp.bfloat16 | |
| ) | |
| params["controlnet"] = controlnet_params | |
| prompts = "Chef in the kitchen" | |
| num_samples = jax.device_count() | |
| prompt_ids = pipe.prepare_text_inputs([prompts] * num_samples) | |
| pose_image = load_image( | |
| "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/pose.png" | |
| ) | |
| processed_image = pipe.prepare_image_inputs([pose_image] * num_samples) | |
| rng = jax.random.PRNGKey(0) | |
| rng = jax.random.split(rng, jax.device_count()) | |
| p_params = replicate(params) | |
| prompt_ids = shard(prompt_ids) | |
| processed_image = shard(processed_image) | |
| images = pipe( | |
| prompt_ids=prompt_ids, | |
| image=processed_image, | |
| params=p_params, | |
| prng_seed=rng, | |
| num_inference_steps=50, | |
| jit=True, | |
| ).images | |
| assert images.shape == (jax.device_count(), 1, 768, 512, 3) | |
| images = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:]) | |
| image_slice = images[0, 253:256, 253:256, -1] | |
| output_slice = jnp.asarray(jax.device_get(image_slice.flatten())) | |
| expected_slice = jnp.array( | |
| [[0.271484, 0.261719, 0.275391, 0.277344, 0.279297, 0.291016, 0.294922, 0.302734, 0.302734]] | |
| ) | |
| assert jnp.abs(output_slice - expected_slice).max() < 1e-2 | |