Spaces:
Running
on
Zero
Running
on
Zero
| import gc | |
| import unittest | |
| import numpy as np | |
| import pytest | |
| import torch | |
| from huggingface_hub import hf_hub_download | |
| from transformers import AutoTokenizer, CLIPTextConfig, CLIPTextModel, CLIPTokenizer, T5EncoderModel | |
| from diffusers import AutoencoderKL, FlowMatchEulerDiscreteScheduler, FluxPipeline, FluxTransformer2DModel | |
| from diffusers.utils.testing_utils import ( | |
| nightly, | |
| numpy_cosine_similarity_distance, | |
| require_big_gpu_with_torch_cuda, | |
| slow, | |
| torch_device, | |
| ) | |
| from ..test_pipelines_common import ( | |
| FluxIPAdapterTesterMixin, | |
| PipelineTesterMixin, | |
| PyramidAttentionBroadcastTesterMixin, | |
| check_qkv_fusion_matches_attn_procs_length, | |
| check_qkv_fusion_processors_exist, | |
| ) | |
| class FluxPipelineFastTests( | |
| unittest.TestCase, PipelineTesterMixin, FluxIPAdapterTesterMixin, PyramidAttentionBroadcastTesterMixin | |
| ): | |
| pipeline_class = FluxPipeline | |
| params = frozenset(["prompt", "height", "width", "guidance_scale", "prompt_embeds", "pooled_prompt_embeds"]) | |
| batch_params = frozenset(["prompt"]) | |
| # there is no xformers processor for Flux | |
| test_xformers_attention = False | |
| test_layerwise_casting = True | |
| test_group_offloading = True | |
| def get_dummy_components(self, num_layers: int = 1, num_single_layers: int = 1): | |
| torch.manual_seed(0) | |
| transformer = FluxTransformer2DModel( | |
| patch_size=1, | |
| in_channels=4, | |
| num_layers=num_layers, | |
| num_single_layers=num_single_layers, | |
| attention_head_dim=16, | |
| num_attention_heads=2, | |
| joint_attention_dim=32, | |
| pooled_projection_dim=32, | |
| axes_dims_rope=[4, 4, 8], | |
| ) | |
| clip_text_encoder_config = CLIPTextConfig( | |
| bos_token_id=0, | |
| eos_token_id=2, | |
| hidden_size=32, | |
| intermediate_size=37, | |
| layer_norm_eps=1e-05, | |
| num_attention_heads=4, | |
| num_hidden_layers=5, | |
| pad_token_id=1, | |
| vocab_size=1000, | |
| hidden_act="gelu", | |
| projection_dim=32, | |
| ) | |
| torch.manual_seed(0) | |
| text_encoder = CLIPTextModel(clip_text_encoder_config) | |
| torch.manual_seed(0) | |
| text_encoder_2 = T5EncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5") | |
| tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip") | |
| tokenizer_2 = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-t5") | |
| torch.manual_seed(0) | |
| vae = AutoencoderKL( | |
| sample_size=32, | |
| in_channels=3, | |
| out_channels=3, | |
| block_out_channels=(4,), | |
| layers_per_block=1, | |
| latent_channels=1, | |
| norm_num_groups=1, | |
| use_quant_conv=False, | |
| use_post_quant_conv=False, | |
| shift_factor=0.0609, | |
| scaling_factor=1.5035, | |
| ) | |
| scheduler = FlowMatchEulerDiscreteScheduler() | |
| return { | |
| "scheduler": scheduler, | |
| "text_encoder": text_encoder, | |
| "text_encoder_2": text_encoder_2, | |
| "tokenizer": tokenizer, | |
| "tokenizer_2": tokenizer_2, | |
| "transformer": transformer, | |
| "vae": vae, | |
| "image_encoder": None, | |
| "feature_extractor": None, | |
| } | |
| def get_dummy_inputs(self, device, seed=0): | |
| if str(device).startswith("mps"): | |
| generator = torch.manual_seed(seed) | |
| else: | |
| generator = torch.Generator(device="cpu").manual_seed(seed) | |
| inputs = { | |
| "prompt": "A painting of a squirrel eating a burger", | |
| "generator": generator, | |
| "num_inference_steps": 2, | |
| "guidance_scale": 5.0, | |
| "height": 8, | |
| "width": 8, | |
| "max_sequence_length": 48, | |
| "output_type": "np", | |
| } | |
| return inputs | |
| def test_flux_different_prompts(self): | |
| pipe = self.pipeline_class(**self.get_dummy_components()).to(torch_device) | |
| inputs = self.get_dummy_inputs(torch_device) | |
| output_same_prompt = pipe(**inputs).images[0] | |
| inputs = self.get_dummy_inputs(torch_device) | |
| inputs["prompt_2"] = "a different prompt" | |
| output_different_prompts = pipe(**inputs).images[0] | |
| max_diff = np.abs(output_same_prompt - output_different_prompts).max() | |
| # Outputs should be different here | |
| # For some reasons, they don't show large differences | |
| assert max_diff > 1e-6 | |
| def test_flux_prompt_embeds(self): | |
| pipe = self.pipeline_class(**self.get_dummy_components()).to(torch_device) | |
| inputs = self.get_dummy_inputs(torch_device) | |
| output_with_prompt = pipe(**inputs).images[0] | |
| inputs = self.get_dummy_inputs(torch_device) | |
| prompt = inputs.pop("prompt") | |
| (prompt_embeds, pooled_prompt_embeds, text_ids) = pipe.encode_prompt( | |
| prompt, | |
| prompt_2=None, | |
| device=torch_device, | |
| max_sequence_length=inputs["max_sequence_length"], | |
| ) | |
| output_with_embeds = pipe( | |
| prompt_embeds=prompt_embeds, | |
| pooled_prompt_embeds=pooled_prompt_embeds, | |
| **inputs, | |
| ).images[0] | |
| max_diff = np.abs(output_with_prompt - output_with_embeds).max() | |
| assert max_diff < 1e-4 | |
| def test_fused_qkv_projections(self): | |
| device = "cpu" # ensure determinism for the device-dependent torch.Generator | |
| components = self.get_dummy_components() | |
| pipe = self.pipeline_class(**components) | |
| pipe = pipe.to(device) | |
| pipe.set_progress_bar_config(disable=None) | |
| inputs = self.get_dummy_inputs(device) | |
| image = pipe(**inputs).images | |
| original_image_slice = image[0, -3:, -3:, -1] | |
| # TODO (sayakpaul): will refactor this once `fuse_qkv_projections()` has been added | |
| # to the pipeline level. | |
| pipe.transformer.fuse_qkv_projections() | |
| assert check_qkv_fusion_processors_exist( | |
| pipe.transformer | |
| ), "Something wrong with the fused attention processors. Expected all the attention processors to be fused." | |
| assert check_qkv_fusion_matches_attn_procs_length( | |
| pipe.transformer, pipe.transformer.original_attn_processors | |
| ), "Something wrong with the attention processors concerning the fused QKV projections." | |
| inputs = self.get_dummy_inputs(device) | |
| image = pipe(**inputs).images | |
| image_slice_fused = image[0, -3:, -3:, -1] | |
| pipe.transformer.unfuse_qkv_projections() | |
| inputs = self.get_dummy_inputs(device) | |
| image = pipe(**inputs).images | |
| image_slice_disabled = image[0, -3:, -3:, -1] | |
| assert np.allclose( | |
| original_image_slice, image_slice_fused, atol=1e-3, rtol=1e-3 | |
| ), "Fusion of QKV projections shouldn't affect the outputs." | |
| assert np.allclose( | |
| image_slice_fused, image_slice_disabled, atol=1e-3, rtol=1e-3 | |
| ), "Outputs, with QKV projection fusion enabled, shouldn't change when fused QKV projections are disabled." | |
| assert np.allclose( | |
| original_image_slice, image_slice_disabled, atol=1e-2, rtol=1e-2 | |
| ), "Original outputs should match when fused QKV projections are disabled." | |
| def test_flux_image_output_shape(self): | |
| pipe = self.pipeline_class(**self.get_dummy_components()).to(torch_device) | |
| inputs = self.get_dummy_inputs(torch_device) | |
| height_width_pairs = [(32, 32), (72, 57)] | |
| for height, width in height_width_pairs: | |
| expected_height = height - height % (pipe.vae_scale_factor * 2) | |
| expected_width = width - width % (pipe.vae_scale_factor * 2) | |
| inputs.update({"height": height, "width": width}) | |
| image = pipe(**inputs).images[0] | |
| output_height, output_width, _ = image.shape | |
| assert (output_height, output_width) == (expected_height, expected_width) | |
| def test_flux_true_cfg(self): | |
| pipe = self.pipeline_class(**self.get_dummy_components()).to(torch_device) | |
| inputs = self.get_dummy_inputs(torch_device) | |
| inputs.pop("generator") | |
| no_true_cfg_out = pipe(**inputs, generator=torch.manual_seed(0)).images[0] | |
| inputs["negative_prompt"] = "bad quality" | |
| inputs["true_cfg_scale"] = 2.0 | |
| true_cfg_out = pipe(**inputs, generator=torch.manual_seed(0)).images[0] | |
| assert not np.allclose(no_true_cfg_out, true_cfg_out) | |
| class FluxPipelineSlowTests(unittest.TestCase): | |
| pipeline_class = FluxPipeline | |
| repo_id = "black-forest-labs/FLUX.1-schnell" | |
| def setUp(self): | |
| super().setUp() | |
| gc.collect() | |
| torch.cuda.empty_cache() | |
| def tearDown(self): | |
| super().tearDown() | |
| gc.collect() | |
| torch.cuda.empty_cache() | |
| def get_inputs(self, device, seed=0): | |
| generator = torch.Generator(device="cpu").manual_seed(seed) | |
| prompt_embeds = torch.load( | |
| hf_hub_download(repo_id="diffusers/test-slices", repo_type="dataset", filename="flux/prompt_embeds.pt") | |
| ).to(torch_device) | |
| pooled_prompt_embeds = torch.load( | |
| hf_hub_download( | |
| repo_id="diffusers/test-slices", repo_type="dataset", filename="flux/pooled_prompt_embeds.pt" | |
| ) | |
| ).to(torch_device) | |
| return { | |
| "prompt_embeds": prompt_embeds, | |
| "pooled_prompt_embeds": pooled_prompt_embeds, | |
| "num_inference_steps": 2, | |
| "guidance_scale": 0.0, | |
| "max_sequence_length": 256, | |
| "output_type": "np", | |
| "generator": generator, | |
| } | |
| def test_flux_inference(self): | |
| pipe = self.pipeline_class.from_pretrained( | |
| self.repo_id, torch_dtype=torch.bfloat16, text_encoder=None, text_encoder_2=None | |
| ).to(torch_device) | |
| inputs = self.get_inputs(torch_device) | |
| image = pipe(**inputs).images[0] | |
| image_slice = image[0, :10, :10] | |
| expected_slice = np.array( | |
| [ | |
| 0.3242, | |
| 0.3203, | |
| 0.3164, | |
| 0.3164, | |
| 0.3125, | |
| 0.3125, | |
| 0.3281, | |
| 0.3242, | |
| 0.3203, | |
| 0.3301, | |
| 0.3262, | |
| 0.3242, | |
| 0.3281, | |
| 0.3242, | |
| 0.3203, | |
| 0.3262, | |
| 0.3262, | |
| 0.3164, | |
| 0.3262, | |
| 0.3281, | |
| 0.3184, | |
| 0.3281, | |
| 0.3281, | |
| 0.3203, | |
| 0.3281, | |
| 0.3281, | |
| 0.3164, | |
| 0.3320, | |
| 0.3320, | |
| 0.3203, | |
| ], | |
| dtype=np.float32, | |
| ) | |
| max_diff = numpy_cosine_similarity_distance(expected_slice.flatten(), image_slice.flatten()) | |
| assert max_diff < 1e-4 | |
| class FluxIPAdapterPipelineSlowTests(unittest.TestCase): | |
| pipeline_class = FluxPipeline | |
| repo_id = "black-forest-labs/FLUX.1-dev" | |
| image_encoder_pretrained_model_name_or_path = "openai/clip-vit-large-patch14" | |
| weight_name = "ip_adapter.safetensors" | |
| ip_adapter_repo_id = "XLabs-AI/flux-ip-adapter" | |
| def setUp(self): | |
| super().setUp() | |
| gc.collect() | |
| torch.cuda.empty_cache() | |
| def tearDown(self): | |
| super().tearDown() | |
| gc.collect() | |
| torch.cuda.empty_cache() | |
| def get_inputs(self, device, seed=0): | |
| if str(device).startswith("mps"): | |
| generator = torch.manual_seed(seed) | |
| else: | |
| generator = torch.Generator(device="cpu").manual_seed(seed) | |
| prompt_embeds = torch.load( | |
| hf_hub_download(repo_id="diffusers/test-slices", repo_type="dataset", filename="flux/prompt_embeds.pt") | |
| ) | |
| pooled_prompt_embeds = torch.load( | |
| hf_hub_download( | |
| repo_id="diffusers/test-slices", repo_type="dataset", filename="flux/pooled_prompt_embeds.pt" | |
| ) | |
| ) | |
| negative_prompt_embeds = torch.zeros_like(prompt_embeds) | |
| negative_pooled_prompt_embeds = torch.zeros_like(pooled_prompt_embeds) | |
| ip_adapter_image = np.zeros((1024, 1024, 3), dtype=np.uint8) | |
| return { | |
| "prompt_embeds": prompt_embeds, | |
| "pooled_prompt_embeds": pooled_prompt_embeds, | |
| "negative_prompt_embeds": negative_prompt_embeds, | |
| "negative_pooled_prompt_embeds": negative_pooled_prompt_embeds, | |
| "ip_adapter_image": ip_adapter_image, | |
| "num_inference_steps": 2, | |
| "guidance_scale": 3.5, | |
| "true_cfg_scale": 4.0, | |
| "max_sequence_length": 256, | |
| "output_type": "np", | |
| "generator": generator, | |
| } | |
| def test_flux_ip_adapter_inference(self): | |
| pipe = self.pipeline_class.from_pretrained( | |
| self.repo_id, torch_dtype=torch.bfloat16, text_encoder=None, text_encoder_2=None | |
| ) | |
| pipe.load_ip_adapter( | |
| self.ip_adapter_repo_id, | |
| weight_name=self.weight_name, | |
| image_encoder_pretrained_model_name_or_path=self.image_encoder_pretrained_model_name_or_path, | |
| ) | |
| pipe.set_ip_adapter_scale(1.0) | |
| pipe.enable_model_cpu_offload() | |
| inputs = self.get_inputs(torch_device) | |
| image = pipe(**inputs).images[0] | |
| image_slice = image[0, :10, :10] | |
| expected_slice = np.array( | |
| [ | |
| 0.1855, | |
| 0.1680, | |
| 0.1406, | |
| 0.1953, | |
| 0.1699, | |
| 0.1465, | |
| 0.2012, | |
| 0.1738, | |
| 0.1484, | |
| 0.2051, | |
| 0.1797, | |
| 0.1523, | |
| 0.2012, | |
| 0.1719, | |
| 0.1445, | |
| 0.2070, | |
| 0.1777, | |
| 0.1465, | |
| 0.2090, | |
| 0.1836, | |
| 0.1484, | |
| 0.2129, | |
| 0.1875, | |
| 0.1523, | |
| 0.2090, | |
| 0.1816, | |
| 0.1484, | |
| 0.2110, | |
| 0.1836, | |
| 0.1543, | |
| ], | |
| dtype=np.float32, | |
| ) | |
| max_diff = numpy_cosine_similarity_distance(expected_slice.flatten(), image_slice.flatten()) | |
| assert max_diff < 1e-4, f"{image_slice} != {expected_slice}" | |