Spaces:
Running
on
Zero
Running
on
Zero
| # coding=utf-8 | |
| # Copyright 2024 HuggingFace Inc. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| import gc | |
| import unittest | |
| import numpy as np | |
| import torch | |
| from PIL import Image | |
| from transformers import AutoTokenizer, T5EncoderModel | |
| from diffusers import ( | |
| AutoPipelineForImage2Image, | |
| AutoPipelineForText2Image, | |
| Kandinsky3Pipeline, | |
| Kandinsky3UNet, | |
| VQModel, | |
| ) | |
| from diffusers.image_processor import VaeImageProcessor | |
| from diffusers.schedulers.scheduling_ddpm import DDPMScheduler | |
| from diffusers.utils.testing_utils import ( | |
| enable_full_determinism, | |
| load_image, | |
| require_torch_gpu, | |
| slow, | |
| ) | |
| from ..pipeline_params import ( | |
| TEXT_TO_IMAGE_BATCH_PARAMS, | |
| TEXT_TO_IMAGE_CALLBACK_CFG_PARAMS, | |
| TEXT_TO_IMAGE_IMAGE_PARAMS, | |
| TEXT_TO_IMAGE_PARAMS, | |
| ) | |
| from ..test_pipelines_common import PipelineTesterMixin | |
| enable_full_determinism() | |
| class Kandinsky3PipelineFastTests(PipelineTesterMixin, unittest.TestCase): | |
| pipeline_class = Kandinsky3Pipeline | |
| params = TEXT_TO_IMAGE_PARAMS - {"cross_attention_kwargs"} | |
| batch_params = TEXT_TO_IMAGE_BATCH_PARAMS | |
| image_params = TEXT_TO_IMAGE_IMAGE_PARAMS | |
| image_latents_params = TEXT_TO_IMAGE_IMAGE_PARAMS | |
| callback_cfg_params = TEXT_TO_IMAGE_CALLBACK_CFG_PARAMS | |
| test_xformers_attention = False | |
| def dummy_movq_kwargs(self): | |
| return { | |
| "block_out_channels": [32, 64], | |
| "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], | |
| "in_channels": 3, | |
| "latent_channels": 4, | |
| "layers_per_block": 1, | |
| "norm_num_groups": 8, | |
| "norm_type": "spatial", | |
| "num_vq_embeddings": 12, | |
| "out_channels": 3, | |
| "up_block_types": [ | |
| "AttnUpDecoderBlock2D", | |
| "UpDecoderBlock2D", | |
| ], | |
| "vq_embed_dim": 4, | |
| } | |
| def dummy_movq(self): | |
| torch.manual_seed(0) | |
| model = VQModel(**self.dummy_movq_kwargs) | |
| return model | |
| def get_dummy_components(self, time_cond_proj_dim=None): | |
| torch.manual_seed(0) | |
| unet = Kandinsky3UNet( | |
| in_channels=4, | |
| time_embedding_dim=4, | |
| groups=2, | |
| attention_head_dim=4, | |
| layers_per_block=3, | |
| block_out_channels=(32, 64), | |
| cross_attention_dim=4, | |
| encoder_hid_dim=32, | |
| ) | |
| scheduler = DDPMScheduler( | |
| beta_start=0.00085, | |
| beta_end=0.012, | |
| steps_offset=1, | |
| beta_schedule="squaredcos_cap_v2", | |
| clip_sample=True, | |
| thresholding=False, | |
| ) | |
| torch.manual_seed(0) | |
| movq = self.dummy_movq | |
| torch.manual_seed(0) | |
| text_encoder = T5EncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5") | |
| torch.manual_seed(0) | |
| tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-t5") | |
| components = { | |
| "unet": unet, | |
| "scheduler": scheduler, | |
| "movq": movq, | |
| "text_encoder": text_encoder, | |
| "tokenizer": tokenizer, | |
| } | |
| return components | |
| def get_dummy_inputs(self, device, seed=0): | |
| if str(device).startswith("mps"): | |
| generator = torch.manual_seed(seed) | |
| else: | |
| generator = torch.Generator(device=device).manual_seed(seed) | |
| inputs = { | |
| "prompt": "A painting of a squirrel eating a burger", | |
| "generator": generator, | |
| "num_inference_steps": 2, | |
| "guidance_scale": 6.0, | |
| "output_type": "np", | |
| "width": 16, | |
| "height": 16, | |
| } | |
| return inputs | |
| def test_kandinsky3(self): | |
| device = "cpu" | |
| components = self.get_dummy_components() | |
| pipe = self.pipeline_class(**components) | |
| pipe = pipe.to(device) | |
| pipe.set_progress_bar_config(disable=None) | |
| output = pipe(**self.get_dummy_inputs(device)) | |
| image = output.images | |
| image_slice = image[0, -3:, -3:, -1] | |
| assert image.shape == (1, 16, 16, 3) | |
| expected_slice = np.array([0.3768, 0.4373, 0.4865, 0.4890, 0.4299, 0.5122, 0.4921, 0.4924, 0.5599]) | |
| assert ( | |
| np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 | |
| ), f" expected_slice {expected_slice}, but got {image_slice.flatten()}" | |
| def test_float16_inference(self): | |
| super().test_float16_inference(expected_max_diff=1e-1) | |
| def test_inference_batch_single_identical(self): | |
| super().test_inference_batch_single_identical(expected_max_diff=1e-2) | |
| class Kandinsky3PipelineIntegrationTests(unittest.TestCase): | |
| def setUp(self): | |
| # clean up the VRAM before each test | |
| super().setUp() | |
| gc.collect() | |
| torch.cuda.empty_cache() | |
| def tearDown(self): | |
| # clean up the VRAM after each test | |
| super().tearDown() | |
| gc.collect() | |
| torch.cuda.empty_cache() | |
| def test_kandinskyV3(self): | |
| pipe = AutoPipelineForText2Image.from_pretrained( | |
| "kandinsky-community/kandinsky-3", variant="fp16", torch_dtype=torch.float16 | |
| ) | |
| pipe.enable_model_cpu_offload() | |
| pipe.set_progress_bar_config(disable=None) | |
| prompt = "A photograph of the inside of a subway train. There are raccoons sitting on the seats. One of them is reading a newspaper. The window shows the city in the background." | |
| generator = torch.Generator(device="cpu").manual_seed(0) | |
| image = pipe(prompt, num_inference_steps=5, generator=generator).images[0] | |
| assert image.size == (1024, 1024) | |
| expected_image = load_image( | |
| "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/kandinsky3/t2i.png" | |
| ) | |
| image_processor = VaeImageProcessor() | |
| image_np = image_processor.pil_to_numpy(image) | |
| expected_image_np = image_processor.pil_to_numpy(expected_image) | |
| self.assertTrue(np.allclose(image_np, expected_image_np, atol=5e-2)) | |
| def test_kandinskyV3_img2img(self): | |
| pipe = AutoPipelineForImage2Image.from_pretrained( | |
| "kandinsky-community/kandinsky-3", variant="fp16", torch_dtype=torch.float16 | |
| ) | |
| pipe.enable_model_cpu_offload() | |
| pipe.set_progress_bar_config(disable=None) | |
| generator = torch.Generator(device="cpu").manual_seed(0) | |
| image = load_image( | |
| "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/kandinsky3/t2i.png" | |
| ) | |
| w, h = 512, 512 | |
| image = image.resize((w, h), resample=Image.BICUBIC, reducing_gap=1) | |
| prompt = "A painting of the inside of a subway train with tiny raccoons." | |
| image = pipe(prompt, image=image, strength=0.75, num_inference_steps=5, generator=generator).images[0] | |
| assert image.size == (512, 512) | |
| expected_image = load_image( | |
| "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/kandinsky3/i2i.png" | |
| ) | |
| image_processor = VaeImageProcessor() | |
| image_np = image_processor.pil_to_numpy(image) | |
| expected_image_np = image_processor.pil_to_numpy(expected_image) | |
| self.assertTrue(np.allclose(image_np, expected_image_np, atol=5e-2)) | |