Spaces:
Running
on
Zero
Running
on
Zero
| # coding=utf-8 | |
| # Copyright 2024 Latte Team and HuggingFace Inc. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| import gc | |
| import inspect | |
| import tempfile | |
| import unittest | |
| import numpy as np | |
| import torch | |
| from transformers import AutoTokenizer, T5EncoderModel | |
| from diffusers import ( | |
| AutoencoderKL, | |
| DDIMScheduler, | |
| LattePipeline, | |
| LatteTransformer3DModel, | |
| PyramidAttentionBroadcastConfig, | |
| ) | |
| from diffusers.utils.import_utils import is_xformers_available | |
| from diffusers.utils.testing_utils import ( | |
| enable_full_determinism, | |
| numpy_cosine_similarity_distance, | |
| require_torch_gpu, | |
| slow, | |
| torch_device, | |
| ) | |
| from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS | |
| from ..test_pipelines_common import PipelineTesterMixin, PyramidAttentionBroadcastTesterMixin, to_np | |
| enable_full_determinism() | |
| class LattePipelineFastTests(PipelineTesterMixin, PyramidAttentionBroadcastTesterMixin, unittest.TestCase): | |
| pipeline_class = LattePipeline | |
| params = TEXT_TO_IMAGE_PARAMS - {"cross_attention_kwargs"} | |
| batch_params = TEXT_TO_IMAGE_BATCH_PARAMS | |
| image_params = TEXT_TO_IMAGE_IMAGE_PARAMS | |
| image_latents_params = TEXT_TO_IMAGE_IMAGE_PARAMS | |
| required_optional_params = PipelineTesterMixin.required_optional_params | |
| test_layerwise_casting = True | |
| test_group_offloading = True | |
| pab_config = PyramidAttentionBroadcastConfig( | |
| spatial_attention_block_skip_range=2, | |
| temporal_attention_block_skip_range=2, | |
| cross_attention_block_skip_range=2, | |
| spatial_attention_timestep_skip_range=(100, 700), | |
| temporal_attention_timestep_skip_range=(100, 800), | |
| cross_attention_timestep_skip_range=(100, 800), | |
| spatial_attention_block_identifiers=["transformer_blocks"], | |
| temporal_attention_block_identifiers=["temporal_transformer_blocks"], | |
| cross_attention_block_identifiers=["transformer_blocks"], | |
| ) | |
| def get_dummy_components(self, num_layers: int = 1): | |
| torch.manual_seed(0) | |
| transformer = LatteTransformer3DModel( | |
| sample_size=8, | |
| num_layers=num_layers, | |
| patch_size=2, | |
| attention_head_dim=8, | |
| num_attention_heads=3, | |
| caption_channels=32, | |
| in_channels=4, | |
| cross_attention_dim=24, | |
| out_channels=8, | |
| attention_bias=True, | |
| activation_fn="gelu-approximate", | |
| num_embeds_ada_norm=1000, | |
| norm_type="ada_norm_single", | |
| norm_elementwise_affine=False, | |
| norm_eps=1e-6, | |
| ) | |
| torch.manual_seed(0) | |
| vae = AutoencoderKL() | |
| scheduler = DDIMScheduler() | |
| text_encoder = T5EncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5") | |
| tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-t5") | |
| components = { | |
| "transformer": transformer.eval(), | |
| "vae": vae.eval(), | |
| "scheduler": scheduler, | |
| "text_encoder": text_encoder.eval(), | |
| "tokenizer": tokenizer, | |
| } | |
| return components | |
| def get_dummy_inputs(self, device, seed=0): | |
| if str(device).startswith("mps"): | |
| generator = torch.manual_seed(seed) | |
| else: | |
| generator = torch.Generator(device=device).manual_seed(seed) | |
| inputs = { | |
| "prompt": "A painting of a squirrel eating a burger", | |
| "negative_prompt": "low quality", | |
| "generator": generator, | |
| "num_inference_steps": 2, | |
| "guidance_scale": 5.0, | |
| "height": 8, | |
| "width": 8, | |
| "video_length": 1, | |
| "output_type": "pt", | |
| "clean_caption": False, | |
| } | |
| return inputs | |
| def test_inference(self): | |
| device = "cpu" | |
| components = self.get_dummy_components() | |
| pipe = self.pipeline_class(**components) | |
| pipe.to(device) | |
| pipe.set_progress_bar_config(disable=None) | |
| inputs = self.get_dummy_inputs(device) | |
| video = pipe(**inputs).frames | |
| generated_video = video[0] | |
| self.assertEqual(generated_video.shape, (1, 3, 8, 8)) | |
| expected_video = torch.randn(1, 3, 8, 8) | |
| max_diff = np.abs(generated_video - expected_video).max() | |
| self.assertLessEqual(max_diff, 1e10) | |
| def test_callback_inputs(self): | |
| sig = inspect.signature(self.pipeline_class.__call__) | |
| has_callback_tensor_inputs = "callback_on_step_end_tensor_inputs" in sig.parameters | |
| has_callback_step_end = "callback_on_step_end" in sig.parameters | |
| if not (has_callback_tensor_inputs and has_callback_step_end): | |
| return | |
| components = self.get_dummy_components() | |
| pipe = self.pipeline_class(**components) | |
| pipe = pipe.to(torch_device) | |
| pipe.set_progress_bar_config(disable=None) | |
| self.assertTrue( | |
| hasattr(pipe, "_callback_tensor_inputs"), | |
| f" {self.pipeline_class} should have `_callback_tensor_inputs` that defines a list of tensor variables its callback function can use as inputs", | |
| ) | |
| def callback_inputs_subset(pipe, i, t, callback_kwargs): | |
| # iterate over callback args | |
| for tensor_name, tensor_value in callback_kwargs.items(): | |
| # check that we're only passing in allowed tensor inputs | |
| assert tensor_name in pipe._callback_tensor_inputs | |
| return callback_kwargs | |
| def callback_inputs_all(pipe, i, t, callback_kwargs): | |
| for tensor_name in pipe._callback_tensor_inputs: | |
| assert tensor_name in callback_kwargs | |
| # iterate over callback args | |
| for tensor_name, tensor_value in callback_kwargs.items(): | |
| # check that we're only passing in allowed tensor inputs | |
| assert tensor_name in pipe._callback_tensor_inputs | |
| return callback_kwargs | |
| inputs = self.get_dummy_inputs(torch_device) | |
| # Test passing in a subset | |
| inputs["callback_on_step_end"] = callback_inputs_subset | |
| inputs["callback_on_step_end_tensor_inputs"] = ["latents"] | |
| output = pipe(**inputs)[0] | |
| # Test passing in a everything | |
| inputs["callback_on_step_end"] = callback_inputs_all | |
| inputs["callback_on_step_end_tensor_inputs"] = pipe._callback_tensor_inputs | |
| output = pipe(**inputs)[0] | |
| def callback_inputs_change_tensor(pipe, i, t, callback_kwargs): | |
| is_last = i == (pipe.num_timesteps - 1) | |
| if is_last: | |
| callback_kwargs["latents"] = torch.zeros_like(callback_kwargs["latents"]) | |
| return callback_kwargs | |
| inputs["callback_on_step_end"] = callback_inputs_change_tensor | |
| inputs["callback_on_step_end_tensor_inputs"] = pipe._callback_tensor_inputs | |
| output = pipe(**inputs)[0] | |
| assert output.abs().sum() < 1e10 | |
| def test_inference_batch_single_identical(self): | |
| self._test_inference_batch_single_identical(batch_size=3, expected_max_diff=1e-3) | |
| def test_attention_slicing_forward_pass(self): | |
| pass | |
| def test_save_load_optional_components(self): | |
| if not hasattr(self.pipeline_class, "_optional_components"): | |
| return | |
| components = self.get_dummy_components() | |
| pipe = self.pipeline_class(**components) | |
| for component in pipe.components.values(): | |
| if hasattr(component, "set_default_attn_processor"): | |
| component.set_default_attn_processor() | |
| pipe.to(torch_device) | |
| pipe.set_progress_bar_config(disable=None) | |
| inputs = self.get_dummy_inputs(torch_device) | |
| prompt = inputs["prompt"] | |
| generator = inputs["generator"] | |
| ( | |
| prompt_embeds, | |
| negative_prompt_embeds, | |
| ) = pipe.encode_prompt(prompt) | |
| # inputs with prompt converted to embeddings | |
| inputs = { | |
| "prompt_embeds": prompt_embeds, | |
| "negative_prompt": None, | |
| "negative_prompt_embeds": negative_prompt_embeds, | |
| "generator": generator, | |
| "num_inference_steps": 2, | |
| "guidance_scale": 5.0, | |
| "height": 8, | |
| "width": 8, | |
| "video_length": 1, | |
| "mask_feature": False, | |
| "output_type": "pt", | |
| "clean_caption": False, | |
| } | |
| # set all optional components to None | |
| for optional_component in pipe._optional_components: | |
| setattr(pipe, optional_component, None) | |
| output = pipe(**inputs)[0] | |
| with tempfile.TemporaryDirectory() as tmpdir: | |
| pipe.save_pretrained(tmpdir, safe_serialization=False) | |
| pipe_loaded = self.pipeline_class.from_pretrained(tmpdir) | |
| pipe_loaded.to(torch_device) | |
| for component in pipe_loaded.components.values(): | |
| if hasattr(component, "set_default_attn_processor"): | |
| component.set_default_attn_processor() | |
| pipe_loaded.set_progress_bar_config(disable=None) | |
| for optional_component in pipe._optional_components: | |
| self.assertTrue( | |
| getattr(pipe_loaded, optional_component) is None, | |
| f"`{optional_component}` did not stay set to None after loading.", | |
| ) | |
| output_loaded = pipe_loaded(**inputs)[0] | |
| max_diff = np.abs(to_np(output) - to_np(output_loaded)).max() | |
| self.assertLess(max_diff, 1.0) | |
| def test_xformers_attention_forwardGenerator_pass(self): | |
| super()._test_xformers_attention_forwardGenerator_pass(test_mean_pixel_difference=False) | |
| class LattePipelineIntegrationTests(unittest.TestCase): | |
| prompt = "A painting of a squirrel eating a burger." | |
| def setUp(self): | |
| super().setUp() | |
| gc.collect() | |
| torch.cuda.empty_cache() | |
| def tearDown(self): | |
| super().tearDown() | |
| gc.collect() | |
| torch.cuda.empty_cache() | |
| def test_latte(self): | |
| generator = torch.Generator("cpu").manual_seed(0) | |
| pipe = LattePipeline.from_pretrained("maxin-cn/Latte-1", torch_dtype=torch.float16) | |
| pipe.enable_model_cpu_offload() | |
| prompt = self.prompt | |
| videos = pipe( | |
| prompt=prompt, | |
| height=512, | |
| width=512, | |
| generator=generator, | |
| num_inference_steps=2, | |
| clean_caption=False, | |
| ).frames | |
| video = videos[0] | |
| expected_video = torch.randn(1, 512, 512, 3).numpy() | |
| max_diff = numpy_cosine_similarity_distance(video.flatten(), expected_video) | |
| assert max_diff < 1e-3, f"Max diff is too high. got {video.flatten()}" | |