Spaces:
Running
on
Zero
Running
on
Zero
| import random | |
| import unittest | |
| import numpy as np | |
| import torch | |
| from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer | |
| import diffusers | |
| from diffusers import ( | |
| AutoencoderKL, | |
| DDIMScheduler, | |
| DPMSolverMultistepScheduler, | |
| LCMScheduler, | |
| MotionAdapter, | |
| PIAPipeline, | |
| StableDiffusionPipeline, | |
| UNet2DConditionModel, | |
| UNetMotionModel, | |
| ) | |
| from diffusers.utils import is_xformers_available, logging | |
| from diffusers.utils.testing_utils import floats_tensor, require_accelerator, torch_device | |
| from ..test_pipelines_common import IPAdapterTesterMixin, PipelineFromPipeTesterMixin, PipelineTesterMixin | |
| def to_np(tensor): | |
| if isinstance(tensor, torch.Tensor): | |
| tensor = tensor.detach().cpu().numpy() | |
| return tensor | |
| class PIAPipelineFastTests(IPAdapterTesterMixin, PipelineTesterMixin, PipelineFromPipeTesterMixin, unittest.TestCase): | |
| pipeline_class = PIAPipeline | |
| params = frozenset( | |
| [ | |
| "prompt", | |
| "height", | |
| "width", | |
| "guidance_scale", | |
| "negative_prompt", | |
| "prompt_embeds", | |
| "negative_prompt_embeds", | |
| "cross_attention_kwargs", | |
| ] | |
| ) | |
| batch_params = frozenset(["prompt", "image", "generator"]) | |
| required_optional_params = frozenset( | |
| [ | |
| "num_inference_steps", | |
| "generator", | |
| "latents", | |
| "return_dict", | |
| "callback_on_step_end", | |
| "callback_on_step_end_tensor_inputs", | |
| ] | |
| ) | |
| test_layerwise_casting = True | |
| test_group_offloading = True | |
| def get_dummy_components(self): | |
| cross_attention_dim = 8 | |
| block_out_channels = (8, 8) | |
| torch.manual_seed(0) | |
| unet = UNet2DConditionModel( | |
| block_out_channels=block_out_channels, | |
| layers_per_block=2, | |
| sample_size=8, | |
| in_channels=4, | |
| out_channels=4, | |
| down_block_types=("CrossAttnDownBlock2D", "DownBlock2D"), | |
| up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"), | |
| cross_attention_dim=cross_attention_dim, | |
| norm_num_groups=2, | |
| ) | |
| scheduler = DDIMScheduler( | |
| beta_start=0.00085, | |
| beta_end=0.012, | |
| beta_schedule="linear", | |
| clip_sample=False, | |
| ) | |
| torch.manual_seed(0) | |
| vae = AutoencoderKL( | |
| block_out_channels=block_out_channels, | |
| in_channels=3, | |
| out_channels=3, | |
| down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"], | |
| up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"], | |
| latent_channels=4, | |
| norm_num_groups=2, | |
| ) | |
| torch.manual_seed(0) | |
| text_encoder_config = CLIPTextConfig( | |
| bos_token_id=0, | |
| eos_token_id=2, | |
| hidden_size=cross_attention_dim, | |
| intermediate_size=37, | |
| layer_norm_eps=1e-05, | |
| num_attention_heads=4, | |
| num_hidden_layers=5, | |
| pad_token_id=1, | |
| vocab_size=1000, | |
| ) | |
| text_encoder = CLIPTextModel(text_encoder_config) | |
| tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip") | |
| torch.manual_seed(0) | |
| motion_adapter = MotionAdapter( | |
| block_out_channels=block_out_channels, | |
| motion_layers_per_block=2, | |
| motion_norm_num_groups=2, | |
| motion_num_attention_heads=4, | |
| conv_in_channels=9, | |
| ) | |
| components = { | |
| "unet": unet, | |
| "scheduler": scheduler, | |
| "vae": vae, | |
| "motion_adapter": motion_adapter, | |
| "text_encoder": text_encoder, | |
| "tokenizer": tokenizer, | |
| "feature_extractor": None, | |
| "image_encoder": None, | |
| } | |
| return components | |
| def get_dummy_inputs(self, device, seed=0): | |
| if str(device).startswith("mps"): | |
| generator = torch.manual_seed(seed) | |
| else: | |
| generator = torch.Generator(device=device).manual_seed(seed) | |
| image = floats_tensor((1, 3, 8, 8), rng=random.Random(seed)).to(device) | |
| inputs = { | |
| "image": image, | |
| "prompt": "A painting of a squirrel eating a burger", | |
| "generator": generator, | |
| "num_inference_steps": 2, | |
| "guidance_scale": 7.5, | |
| "output_type": "pt", | |
| } | |
| return inputs | |
| def test_from_pipe_consistent_config(self): | |
| assert self.original_pipeline_class == StableDiffusionPipeline | |
| original_repo = "hf-internal-testing/tinier-stable-diffusion-pipe" | |
| original_kwargs = {"requires_safety_checker": False} | |
| # create original_pipeline_class(sd) | |
| pipe_original = self.original_pipeline_class.from_pretrained(original_repo, **original_kwargs) | |
| # original_pipeline_class(sd) -> pipeline_class | |
| pipe_components = self.get_dummy_components() | |
| pipe_additional_components = {} | |
| for name, component in pipe_components.items(): | |
| if name not in pipe_original.components: | |
| pipe_additional_components[name] = component | |
| pipe = self.pipeline_class.from_pipe(pipe_original, **pipe_additional_components) | |
| # pipeline_class -> original_pipeline_class(sd) | |
| original_pipe_additional_components = {} | |
| for name, component in pipe_original.components.items(): | |
| if name not in pipe.components or not isinstance(component, pipe.components[name].__class__): | |
| original_pipe_additional_components[name] = component | |
| pipe_original_2 = self.original_pipeline_class.from_pipe(pipe, **original_pipe_additional_components) | |
| # compare the config | |
| original_config = {k: v for k, v in pipe_original.config.items() if not k.startswith("_")} | |
| original_config_2 = {k: v for k, v in pipe_original_2.config.items() if not k.startswith("_")} | |
| assert original_config_2 == original_config | |
| def test_motion_unet_loading(self): | |
| components = self.get_dummy_components() | |
| pipe = self.pipeline_class(**components) | |
| assert isinstance(pipe.unet, UNetMotionModel) | |
| def test_ip_adapter(self): | |
| expected_pipe_slice = None | |
| if torch_device == "cpu": | |
| expected_pipe_slice = np.array( | |
| [ | |
| 0.5475, | |
| 0.5769, | |
| 0.4873, | |
| 0.5064, | |
| 0.4445, | |
| 0.5876, | |
| 0.5453, | |
| 0.4102, | |
| 0.5247, | |
| 0.5370, | |
| 0.3406, | |
| 0.4322, | |
| 0.3991, | |
| 0.3756, | |
| 0.5438, | |
| 0.4780, | |
| 0.5087, | |
| 0.5248, | |
| 0.6243, | |
| 0.5506, | |
| 0.3491, | |
| 0.5440, | |
| 0.6111, | |
| 0.5122, | |
| 0.5326, | |
| 0.5180, | |
| 0.5538, | |
| ] | |
| ) | |
| return super().test_ip_adapter(expected_pipe_slice=expected_pipe_slice) | |
| def test_dict_tuple_outputs_equivalent(self): | |
| expected_slice = None | |
| if torch_device == "cpu": | |
| expected_slice = np.array([0.5476, 0.4092, 0.5289, 0.4755, 0.5092, 0.5186, 0.5403, 0.5287, 0.5467]) | |
| return super().test_dict_tuple_outputs_equivalent(expected_slice=expected_slice) | |
| def test_attention_slicing_forward_pass(self): | |
| pass | |
| def test_inference_batch_single_identical( | |
| self, | |
| batch_size=2, | |
| expected_max_diff=1e-4, | |
| additional_params_copy_to_batched_inputs=["num_inference_steps"], | |
| ): | |
| components = self.get_dummy_components() | |
| pipe = self.pipeline_class(**components) | |
| for components in pipe.components.values(): | |
| if hasattr(components, "set_default_attn_processor"): | |
| components.set_default_attn_processor() | |
| pipe.to(torch_device) | |
| pipe.set_progress_bar_config(disable=None) | |
| inputs = self.get_dummy_inputs(torch_device) | |
| # Reset generator in case it is has been used in self.get_dummy_inputs | |
| inputs["generator"] = self.get_generator(0) | |
| logger = logging.get_logger(pipe.__module__) | |
| logger.setLevel(level=diffusers.logging.FATAL) | |
| # batchify inputs | |
| batched_inputs = {} | |
| batched_inputs.update(inputs) | |
| for name in self.batch_params: | |
| if name not in inputs: | |
| continue | |
| value = inputs[name] | |
| if name == "prompt": | |
| len_prompt = len(value) | |
| batched_inputs[name] = [value[: len_prompt // i] for i in range(1, batch_size + 1)] | |
| batched_inputs[name][-1] = 100 * "very long" | |
| else: | |
| batched_inputs[name] = batch_size * [value] | |
| if "generator" in inputs: | |
| batched_inputs["generator"] = [self.get_generator(i) for i in range(batch_size)] | |
| if "batch_size" in inputs: | |
| batched_inputs["batch_size"] = batch_size | |
| for arg in additional_params_copy_to_batched_inputs: | |
| batched_inputs[arg] = inputs[arg] | |
| output = pipe(**inputs) | |
| output_batch = pipe(**batched_inputs) | |
| assert output_batch[0].shape[0] == batch_size | |
| max_diff = np.abs(to_np(output_batch[0][0]) - to_np(output[0][0])).max() | |
| assert max_diff < expected_max_diff | |
| def test_to_device(self): | |
| components = self.get_dummy_components() | |
| pipe = self.pipeline_class(**components) | |
| pipe.set_progress_bar_config(disable=None) | |
| pipe.to("cpu") | |
| # pipeline creates a new motion UNet under the hood. So we need to check the device from pipe.components | |
| model_devices = [ | |
| component.device.type for component in pipe.components.values() if hasattr(component, "device") | |
| ] | |
| self.assertTrue(all(device == "cpu" for device in model_devices)) | |
| output_cpu = pipe(**self.get_dummy_inputs("cpu"))[0] | |
| self.assertTrue(np.isnan(output_cpu).sum() == 0) | |
| pipe.to(torch_device) | |
| model_devices = [ | |
| component.device.type for component in pipe.components.values() if hasattr(component, "device") | |
| ] | |
| self.assertTrue(all(device == torch_device for device in model_devices)) | |
| output_device = pipe(**self.get_dummy_inputs(torch_device))[0] | |
| self.assertTrue(np.isnan(to_np(output_device)).sum() == 0) | |
| def test_to_dtype(self): | |
| components = self.get_dummy_components() | |
| pipe = self.pipeline_class(**components) | |
| pipe.set_progress_bar_config(disable=None) | |
| # pipeline creates a new motion UNet under the hood. So we need to check the dtype from pipe.components | |
| model_dtypes = [component.dtype for component in pipe.components.values() if hasattr(component, "dtype")] | |
| self.assertTrue(all(dtype == torch.float32 for dtype in model_dtypes)) | |
| pipe.to(dtype=torch.float16) | |
| model_dtypes = [component.dtype for component in pipe.components.values() if hasattr(component, "dtype")] | |
| self.assertTrue(all(dtype == torch.float16 for dtype in model_dtypes)) | |
| def test_prompt_embeds(self): | |
| components = self.get_dummy_components() | |
| pipe = self.pipeline_class(**components) | |
| pipe.set_progress_bar_config(disable=None) | |
| pipe.to(torch_device) | |
| inputs = self.get_dummy_inputs(torch_device) | |
| inputs.pop("prompt") | |
| inputs["prompt_embeds"] = torch.randn((1, 4, pipe.text_encoder.config.hidden_size), device=torch_device) | |
| pipe(**inputs) | |
| def test_free_init(self): | |
| components = self.get_dummy_components() | |
| pipe = self.pipeline_class(**components) | |
| pipe.set_progress_bar_config(disable=None) | |
| pipe.to(torch_device) | |
| inputs_normal = self.get_dummy_inputs(torch_device) | |
| frames_normal = pipe(**inputs_normal).frames[0] | |
| pipe.enable_free_init( | |
| num_iters=2, | |
| use_fast_sampling=True, | |
| method="butterworth", | |
| order=4, | |
| spatial_stop_frequency=0.25, | |
| temporal_stop_frequency=0.25, | |
| ) | |
| inputs_enable_free_init = self.get_dummy_inputs(torch_device) | |
| frames_enable_free_init = pipe(**inputs_enable_free_init).frames[0] | |
| pipe.disable_free_init() | |
| inputs_disable_free_init = self.get_dummy_inputs(torch_device) | |
| frames_disable_free_init = pipe(**inputs_disable_free_init).frames[0] | |
| sum_enabled = np.abs(to_np(frames_normal) - to_np(frames_enable_free_init)).sum() | |
| max_diff_disabled = np.abs(to_np(frames_normal) - to_np(frames_disable_free_init)).max() | |
| self.assertGreater( | |
| sum_enabled, 1e1, "Enabling of FreeInit should lead to results different from the default pipeline results" | |
| ) | |
| self.assertLess( | |
| max_diff_disabled, | |
| 1e-4, | |
| "Disabling of FreeInit should lead to results similar to the default pipeline results", | |
| ) | |
| def test_free_init_with_schedulers(self): | |
| components = self.get_dummy_components() | |
| pipe: PIAPipeline = self.pipeline_class(**components) | |
| pipe.set_progress_bar_config(disable=None) | |
| pipe.to(torch_device) | |
| inputs_normal = self.get_dummy_inputs(torch_device) | |
| frames_normal = pipe(**inputs_normal).frames[0] | |
| schedulers_to_test = [ | |
| DPMSolverMultistepScheduler.from_config( | |
| components["scheduler"].config, | |
| timestep_spacing="linspace", | |
| beta_schedule="linear", | |
| algorithm_type="dpmsolver++", | |
| steps_offset=1, | |
| clip_sample=False, | |
| ), | |
| LCMScheduler.from_config( | |
| components["scheduler"].config, | |
| timestep_spacing="linspace", | |
| beta_schedule="linear", | |
| steps_offset=1, | |
| clip_sample=False, | |
| ), | |
| ] | |
| components.pop("scheduler") | |
| for scheduler in schedulers_to_test: | |
| components["scheduler"] = scheduler | |
| pipe: PIAPipeline = self.pipeline_class(**components) | |
| pipe.set_progress_bar_config(disable=None) | |
| pipe.to(torch_device) | |
| pipe.enable_free_init(num_iters=2, use_fast_sampling=False) | |
| inputs = self.get_dummy_inputs(torch_device) | |
| frames_enable_free_init = pipe(**inputs).frames[0] | |
| sum_enabled = np.abs(to_np(frames_normal) - to_np(frames_enable_free_init)).sum() | |
| self.assertGreater( | |
| sum_enabled, | |
| 1e1, | |
| "Enabling of FreeInit should lead to results different from the default pipeline results", | |
| ) | |
| def test_xformers_attention_forwardGenerator_pass(self): | |
| components = self.get_dummy_components() | |
| pipe = self.pipeline_class(**components) | |
| for component in pipe.components.values(): | |
| if hasattr(component, "set_default_attn_processor"): | |
| component.set_default_attn_processor() | |
| pipe.to(torch_device) | |
| pipe.set_progress_bar_config(disable=None) | |
| inputs = self.get_dummy_inputs(torch_device) | |
| output_without_offload = pipe(**inputs).frames[0] | |
| output_without_offload = ( | |
| output_without_offload.cpu() if torch.is_tensor(output_without_offload) else output_without_offload | |
| ) | |
| pipe.enable_xformers_memory_efficient_attention() | |
| inputs = self.get_dummy_inputs(torch_device) | |
| output_with_offload = pipe(**inputs).frames[0] | |
| output_with_offload = ( | |
| output_with_offload.cpu() if torch.is_tensor(output_with_offload) else output_without_offload | |
| ) | |
| max_diff = np.abs(to_np(output_with_offload) - to_np(output_without_offload)).max() | |
| self.assertLess(max_diff, 1e-4, "XFormers attention should not affect the inference results") | |